Refine Your Search

Search Results

Viewing 1 to 15 of 15
Journal Article

Health Assessment of Liquid Cooling System in Aircrafts: Data Visualization, Reduction, Clustering, and Classification

2012-10-22
2012-01-2106
This paper addresses the issues of data reduction, visualization, clustering and classification for fault diagnosis and prognosis of the Liquid Cooling System (LCS) in an aircraft. LCS is a cooling system that consists of a left and a right loop, where each loop is composed of a variety of components including a heat exchanger, source control units, a compressor, and a pump. The LCS data and the fault correlation analysis used in the paper are provided by Hamilton Sundstrand (HS) - A United Technologies Company (UTC). This data set includes a variety of sensor measurements for system parameters including temperatures and pressures of different components, along with liquid levels and valve positions of the pumps and controllers. A graphical user interface (GUI) is developed in Matlab that facilitates extensive plotting of the parameters versus each other, and/or time to observe the trends in the data.
Technical Paper

Structural Pressures Developed During Fill of Complex Systems

1998-07-13
981735
Excessive impact pressures can develop when an evacuated system is filled with liquid. Such a process is usually highly chaotic, especially when the system geometry is complex. Available computational methods by themselves cannot provide the necessary answers. The International Space Station (ISS) heat exchanger has a complex flow system, and a synthesis of computational and experimental methods was necessary to design the system. The FLOW-NET two-phase flow program was used to determine the range of loss coefficients and the liquid-vapor interface mass and energy transfer that would fit the measured impact pressures. These loss coefficients could then be used to compute the impact pressures for a design configuration similar to the one tested at a range of operating conditions.
Technical Paper

International Space Station Temperature and Humidity Control Subassembly Hardware, Control and Performance Description

1998-07-13
981618
The temperature and humidity of the air within the habitable areas of the International Space Station are controlled by a set of hardware and software collectively referred to as the Temperature and Humidity Control (THC) subassembly. This subassembly 1) controls the temperature of the cabin air based on a crew selected temperature, 2) maintains humidity within defined limits, and 3) generates a ventilation air flow which circulates through the cabin. This paper provides descriptions of the components of the THC subassembly, their performance ranges, and the control approach of the hardware. In addition, the solutions of the design challenges of maintaining a maximum case radiated noise level of NC 45, controlling the cabin air temperature to within ±2°F of a setpoint temperature, and providing a means of controlling microbial growth on the heat exchanger surfaces are described.
Technical Paper

Testing, Modeling and System Impact of Metabolic Heat Regenerated Temperature Swing Adsorption

2008-06-29
2008-01-2116
Metabolic heat regenerated temperature swing adsorption (MTSA) technology is being developed for removal and rejection of carbon dioxide (CO2) and heat from a portable life support system (PLSS) to the Martian environment. Previously, hardware was built and tested to demonstrate using heat from simulated, dry ventilation loop gas to affect the temperature swing required to regenerate an adsorbent used for CO2 removal. New testing has been performed using a moist, simulated ventilation loop gas to demonstrate the effects of water condensing and freezing in the heat exchanger during adsorbent regeneration. Also, the impact of MTSA on PLSS design was evaluated by performing thermal balances assuming a specific PLSS architecture. Results using NASA's Extravehicular Activity System Sizing Analysis Tool (EVAS_SAT), a PLSS system evaluation tool, are presented.
Technical Paper

Heat Exchanger Fouling Diagnosis for an Aircraft Air-Conditioning System

2013-09-17
2013-01-2250
This paper addresses the issue of fault diagnosis in the heat exchanger of an aircraft Air Conditioning System (ACS). The heat exchanger cools the air by transferring the heat to the ram-air. Due to a variety of biological, mechanical and chemical reasons, the heat exchanger may experience fouling conditions that reduces the efficiency and could considerably affect the functionality of the ACS. Since, the access to the heat exchanger is limited and time consuming, it is preferable to implement an early fault diagnosis technique that would facilitate Condition Based Maintenance (CBM). The main contribution of the paper is pre-flight fault assessment of the heat exchanger using a combined model-based and data-driven approach of fault diagnosis. A Simulink model of the ACS, that has been designed and validated by an industry partner, has been used for generation of sensor data for various fouling conditions.
Technical Paper

The Personal Computer Transport Analyzer Program

2006-07-17
2006-01-2050
Since flight requirements often necessitate last-minute re-analysis, it became crucial to develop flexible and comprehensive transport phenomena analysis software that would quickly ensure all vehicle and payload requirements would be satisfied. The software would replace various mainframe-based software, such as the Thermal Radiation Analyzer System (TRASYS) and the Systems Improved Numerical Differencing Analyzer (SINDA). The software would need to have the flexibility to employ models that could be developed and modified as vehicle systems change. By use of event files which contain simple, intuitive commands, the characteristics of individual missions could be built as inputs to the model. By moving the Environmental Control & Life Support (ECLS) system model to the PC environment, each analyst would have execution, storage, and processing management control. And of course, software portability would be greatly increased.
Technical Paper

Microbial Characterization of Internal Active Thermal Control System (IATCS) Hardware Surfaces after Five Years of Operation in the International Space Station

2006-07-17
2006-01-2157
A flex hose assembly containing aqueous coolant from the International Space Station (ISS) Internal Active Thermal Control System (IATCS) consisting of a 2 foot section of Teflon hose and quick disconnects (QDs) and a Special Performance Checkout Unit (SPCU) heat exchanger containing separate channels of IATCS coolant and iodinated water used to cool spacesuits and Extravehicular Mobility Units (EMUs) were returned for destructive analyses on Shuttle return to flight mission STS-114. The original aqueous IATCS coolant used in Node 1, the Laboratory Module, and the Airlock consisted of water, borate (pH buffer), phosphate (corrosion control), and silver sulfate (microbiological control) at a pH of 9.5 ± 0.5.
Technical Paper

Centrifuge Accommodation Module (CAM) Cabin Air Temperature and Humidity Control Analysis

2005-07-11
2005-01-2801
The Centrifuge Accommodation Module (CAM) is designed to be one of the modules of the International Space Station (ISS) for performing on-orbit science experiments over an extended period of time. The common cabin air assembly (CCAA) is utilized as the hardware for air temperature and humidity control (THC) for the CAM module cabin. The CCAA unit contains a variable speed fan, heat exchanger, temperature control valve, water separator, temperature sensor, and electrical interface box. A temperature and humidity simulation model was developed to perform the THC analysis for the CCAA unit inside the CAM. This model applies both fixed control volume and a quasi-steady-state approach for computing critical information for evaluating/assessing CCAA system performance and capabilities.
Technical Paper

Corrosion Testing of Brazed Space Station IATCS Materials

2004-07-19
2004-01-2471
Increased nickel concentrations in the IATCS coolant prompted a study of the corrosion rates of nickel-brazed heat exchangers in the system. The testing has shown that corrosion is occurring in a silicon-rich intermetallic phase in the braze filler of coldplates and heat exchangers as the result of a decrease in the coolant pH brought about by cabin carbon dioxide permeation through polymeric flexhoses. Similar corrosion is occurring in the EMU de-ionized water loop. Certain heat exchangers and coldplates have more silicon-rich phase because of their manufacturing method, and those units produce more nickel corrosion product. Silver biocide additions did not induce pitting corrosion at silver precipitate sites.
Technical Paper

Development of Pressure Swing Adsorption Technology for Spacesuit Carbon Dioxide and Humidity Removal

2006-07-17
2006-01-2203
Metabolically produced carbon dioxide (CO2) removal in spacesuit applications has traditionally been accomplished utilizing non-regenerative Lithium Hydroxide (LiOH) canisters. In recent years, regenerative Metal Oxide (MetOx) has been developed to replace the Extravehicular Mobility Unity (EMU) LiOH canister for extravehicular activity (EVA) missions in micro-gravity, however, MetOx may carry a significant weight burden for potential use in future Lunar or planetary EVA exploration missions. Additionally, both of these methods of CO2 removal have a finite capacity sized for the particular mission profile. Metabolically produced water vapor removal in spacesuits has historically been accomplished by a condensing heat exchanger within the ventilation process loop of the suit life support system.
Technical Paper

Development of a Miniaturized High Intensity Cryogenic Flow Boiler

2002-07-15
2002-01-2408
An extremely compact heat exchanger is being developed which can boil cryogenic fluids with a liquid heat source at temperatures close to its freezing point. Freezing of the heat source fluid, e.g. water is precluded by the normal flow arrangement. Boiling and superheating of the cryogen occurs as the fluid approaches the heat source in a stack of bonded jet-array laminations. This heat exchanger technology is important in many applications where the storage of fluids at cryogenic temperatures offers substantial advantages in terms of system weight and volume. Often, as in several advanced portable life support system concepts, the advantages include the use of the cryogen as a heat sink in system thermal management. Realizing this benefit and safely conditioning the stored fluid for use requires effective heat transfer between the cryogen and a secondary heat transport fluid.
Journal Article

Performance of the Extravehicular Mobility Unit (EMU) Airlock Coolant Loop Remediation (A/L CLR) Hardware

2008-06-29
2008-01-2060
Following the Columbia accident, the EMUs (Extravehicular Mobility Units) onboard the ISS (International Space Station) went unused for an extended period of time. Upon startup, the units experienced a failure in the coolant systems. The failure resulted in a loss of EVA (Extravehicular Activity) capability from the US segment of the ISS. A failure investigation determined that chemical and biological contaminants and byproducts from the ISS Airlock Heat Exchanger, and the EMU itself, fouled the magnetically coupled pump in the EMU Transport Loop Fan/Pump Separator leading to a lack of coolant flow. Remediation hardware (the Airlock Coolant Loop Remediation water processing kit) and a process to periodically clean the EMU coolant loops on orbit were devised and implemented. The intent of this paper is to report on the successful implementation of the resultant hardware and process, and to highlight the go-forward plan.
Technical Paper

Testing of the Multi-Fluid Evaporator Prototype

2008-06-29
2008-01-2166
Hamilton Sundstrand has developed a scalable evaporative heat rejection system called the Multi-Fluid Evaporator (MFE). It was designed to support the Orion Crew Module and to support future Constellation missions. The MFE would be used from Earth sea level conditions to the vacuum of space. This system combines the functions of the Space Shuttle flash evaporator and ammonia boiler into a single compact package with improved freeze-up protection. The heat exchanger core is designed so that radial flow of the evaporant provides increasing surface area to keep the back pressure low. The multiple layer construction of the core allows for efficient scale up to the desired heat rejection rate. A full-scale unit uses multiple core sections that, combined with a novel control scheme, manage the risk of freezing the heat exchanger cores. A four-core MFE prototype was built in 2007.
Technical Paper

Testing of the Multi-Fluid Evaporator Engineering Development Unit

2007-07-09
2007-01-3205
Hamilton Sundstrand is under contract with the NASA Johnson Space Center to develop a scalable, evaporative heat rejection system called the Multi-Fluid Evaporator (MFE). It is being designed to support the Orion Crew Module and to support future Constellation missions. A MFE would be used from Earth sea level conditions to the vacuum of space. The current Space Shuttle configuration utilizes an ammonia boiler and flash evaporator system to achieve cooling at all altitudes. With the MFE system, both functions are combined into a single compact package with significant weight reduction and improved freeze-up protection. The heat exchanger core is designed so that radial flow of the evaporant provides increasing cross-sectional area to keep the back pressure low. Its multiple layer construction allows for efficient scale up to the desired heat rejection rate.
Technical Paper

Assessment of the Microbial Control Measures for the Temperature and Humidity Control Subsystem Condensing Heat Exchanger of the International Space Station

1999-07-12
1999-01-2109
In August 1997 NASA/Marshall Space Flight Center (MSFC) began a test with the objective of monitoring the growth of microorganisms on material simulating the surface of the International Space Station (ISS) Temperature and Humidity Control (THC) Condensing Heat Exchanger (CHX). The test addressed the concerns of potential uncontrolled microbial growth on the surface of the THC CHX subsystem. For this study, humidity condensate from a closed manned environment was used as a direct challenge to the surfaces of six cascades in a test set-up. The condensate was collected using a Shuttle-type CHX within the MSFC End-Use Equipment Testing Facility. Panels in four of the six cascades tested were coated with the ISS CHX silver impregnated hydrophilic coating. The remaining two cascade panels were coated with the hydrophilic coating without the antimicrobial component, silver. Results of the fourteen-month study are discussed in this paper.
X