Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Study on the Step by Step Energy Absorption Method Based on the Theory of Reverse Design

2007-08-05
2007-01-3685
As the length of the frontal structure of the minibus can't be as long as cars, some new methods have to be developed to maximum the effect of the energy absorption. In this paper, a step-by-step energy absorption method which based on reverse design was proposed. Two plates with different size and different thickness which can take part in the energy absorption step by step were added in each of the rectangular longitudinal beams. Finite element models were developed both for rectangular beam and minibus. Multi-body model was also developed for the restraint system. The validation of the rectangular beam model was done by sled test, and the minibus model was done by minibus crash test. The computational results matched well with the test results. Then, orthogonal experimental method was used to find the most effective parameters for the energy absorption. These parameters were optimized in the simulation of minibus crash.
Technical Paper

Development of a Neck Finite Element Model with Active Muscle Force for the THOR-50M Numerical Dummy

2023-04-11
2023-01-0002
With the development of active safety technology, effort has gradually shifted to preventing or minimizing car crashes. Automatic Emergency Braking Technology (AEB) can avoid accidents by warning and even automatic braking, but there is a contradiction between the accompanying occupant out-of-position and traditional passive safety design. In addition, the 2025 version of C-NCAP plans to add neck injury assessment requirements for AEB [1]. In order to study the kinematic response of the occupant's neck under AEB, a neck finite element model with active muscle force is established in this paper. Firstly, the open-source THOR-50M neck geometric model is used for finite element discretization. Secondly, the neck FE model of THOR-50M is verified through the qualification procedure of the NHTSA standard. Thirdly, according to the geometric features of human neck muscles in Zygote Body database, the neck muscle parameters are preliminarily determined.
Technical Paper

Study on Vehicle Collision Predicting using Vehicle Acceleration and Angular Velocity of Brake Pedal

2015-04-14
2015-01-1405
The combination of passive and active vehicle safety technologies can effectively improve vehicle safety. Most of them predict vehicle crashes using radar or video, but they can't be applied extensively currently due to the high cost. Another collision forecasting method is more economic which is based on the driver behavior and vehicle status, such as the acceleration, angular velocity of the brake pedal and so on. However, the acceleration and angular velocity of the brake pedal will change with the driver and the vehicle type. In order to study the effect of different drivers and vehicle types on the braking acceleration and angular velocity of the brake pedal, six volunteers were asked to drive five vehicles for simulating the working conditions of emergency braking, normal braking, inching braking and passing barricades under different velocities. All the tests were conducted on asphalt road, and comprehensive experimental design was used to arrange tests.
Journal Article

A Preliminary Study on the Restraint System of Self-Driving Car

2020-04-14
2020-01-1333
Due to the variation of compartment design and occupant’s posture in self-driving cars, there is a new and major challenge for occupant protection. In particular, the studies on occupant restraint systems used in the self-driving car have been significantly delayed compared to the development of the autonomous technologies. In this paper, a numerical study was conducted to investigate the effectiveness of three typical restraint systems on the driver protection in three different scenarios.
X