Refine Your Search

Topic

Author

Search Results

Journal Article

On-Chip Delta-Sigma ADC for Rotor Positioning Sensor Application (Resolver-to-Digital Converter)

2014-04-01
2014-01-0333
This paper discusses the RDC method utilizing delta-sigma analog-to-digital converter hardware module (DSADC) integrated in the Infineon's microcontroller family. With its higher resolution capability when compared to the regularly used ADC with successive-approximation (SAR), DSADC seems to have more potential. On the other hand, DSADC's inherent properties, such as asynchronous sampling rate and group delay, which when not handled properly, would have negative effects to the rotor positioning system. The solution to overcome those side-effects involves utilization of other internal microcontroller's resources such as timers and capture units, as well as additional software processing run inside CPU. The rotor positioning system is first modeled and simulated in high-level simulation language environment (Matlab and Simulink) in order to predict the transient- and steady state behaviors. The group delay itself is obtained by simulating the model of DSADC module implementation.
Journal Article

GBit Ethernet - The Solution for Future In-Vehicle Network Requirements?

2015-04-14
2015-01-0200
In-vehicle communication faces increasing bandwidth demands, which can no longer be met by today's MOST150, FlexRay or CAN networks. In recent years, Fast Ethernet has gained a lot of momentum in the automotive world, because it promises to bridge the bandwidth gap. A first step in this direction is the introduction of Ethernet as an On Board Diagnostic (OBD) interface for production vehicles. The next potential use cases include the use of Ethernet in Driver Assistance Systems and in the infotainment domain. However, for many of these use cases, the Fast Ethernet solution is too slow to move the huge amount of data between the Domain Controllers, ADAS Systems, Safety Computer and Chassis Controller in an adequate way. The result is the urgent need for a network technology beyond the Fast Ethernet solution. The question is: which innovation will provide enough bandwidth for domain controllers, fast flashing routines, video data, MOST-replacement and internal ECU buses?
Journal Article

Hydrogen Fuel Consumption Correlation between Established EPA Measurement Methods and Exhaust Emissions Measurements

2008-04-14
2008-01-1038
The development of hydrogen-fueled vehicles has created the need for established fuel consumption testing methods. Until now the EPA has only accepted three methods of hydrogen fuel consumption testing, gravimetric, PVT (stabilized pressure, volume and temperature), and Coriolis mass flow; all of which necessitate physical measurements of the fuel supply [1]. BMW has developed an equation and subsequent testing methods to accurately and effectively determine hydrogen fuel consumption in light-duty vehicles using only exhaust emissions. Known as “Hydrogen-Balance”, the new equation requires no changes to EPA procedures and only slight modifications to most existing chassis dynamometers and CVS (Constant Volume Sampling) systems. The SAE 2008-01-1036, also written by BMW, explains the background as well as required equipment and changes to the CVS testing system. This paper takes hydrogen balance further by testing it against the three EPA established forms of fuel consumption.
Journal Article

Possible Influences on Fuel Consumption Calculations while using the Hydrogen-Balance Method

2008-04-14
2008-01-1037
The Hydrogen-Balance equation makes it possible to calculate the fuel economy or fuel consumption of hydrogen powered vehicles simply by analyzing exhaust emissions. While the benefits of such a method are apparent, it is important to discuss possible influencing factors that may decrease Hydrogen-Balance accuracy. Measuring vehicle exhaust emissions is done with a CVS (Constant Volume Sampling) system. While the CVS system has proven itself both robust and precise over the years, utilizing it for hydrogen applications requires extra caution to retain measurement accuracy. Consideration should be given to all testing equipment, as well as the vehicle being tested. Certain environmental factors may also play a role not just in Hydrogen-Balance accuracy, but as also in other low emission testing accuracy.
Technical Paper

The Particle Number Counter as a “Black Box” - A Novel Approach to a Universal Particle Number Calibration Standard for Automotive Exhaust

2020-09-15
2020-01-2195
The reduction of vehicle exhaust particle emissions is a success story of European legislation. Various particle number (PN) counters and calibration procedures serve as tools to enforce PN emission limits during vehicle type approval (VTA) or periodical technical inspection (PTI) of in-use vehicles. Although all devices and procedures apply to the same PN-metric, they were developed for different purposes, by different stakeholder groups and for different target costs and technical scopes. Furthermore, their calibration procedures were independently defined by different stakeholder communities. This frequently leads to comparability and interpretation issues. Systematic differences of stationary and mobile PN counters (PN-PEMS) are well-documented. New, low-cost PTI PN counters will aggravate this problem. Today, tools to directly compare different instruments are scarce.
Journal Article

The Challenges of Devising Next Generation Automotive Benchmarks

2008-04-14
2008-01-0382
More than ever, microcontroller performance in cars has a direct impact on the driving experience, on compliance with improved safety, ever-stricter emissions regulations, and on fuel economy. The simple microcontrollers formerly used in automobiles are now being replaced by powerful number-crunchers with incredible levels of peripheral integration. As a result, performance can no longer be measured in MIPS (Millions of Instructions Per Second). A microcontroller's effectiveness is based on coherent partitioning between analog and digital, hardware and software, tools and methodology. To make an informed choice among the available devices, the designer needs benchmarks that are specific to automotive applications, and which provide a realistic representation of how the device will perform in the automotive environment.
Technical Paper

The Development of BMW Catalyst Concepts for LEV / ULEV and EU III / IV Legislations 6 Cylinder Engine with Close Coupled Main Catalyst

1998-02-23
980418
To meet LEV and EU Stage III emission requirements, it is necessary for new catalytic converters to be designed which exceed light-off temperature as quickly as possible. The technical solutions are secondary air injection, active heating systems such as the electrically heated catalytic converter, and the close coupled catalytic converter. Engine control functions are extensively used to heat the converter and will to play a significant role in the future. The concept of relocating the converter to a position close to the engine in an existing vehicle involves new conflicts. Examples include the space requirements, the thermal resistance of the catalytic coating and high temperature loads in the engine compartment.
Technical Paper

The Challenges of Next Generation Automotive Benchmarks

2007-04-16
2007-01-0512
More than ever, microcontroller performance in cars has a direct impact on the driving experience, on compliance with improved safety, ever-stricter emissions regulations, and on fuel economy. The simple microcontrollers formerly used in automobiles are now being replaced by powerful number-crunchers whose performance can no longer be measured in MIPS. Instead, their effectiveness is based on a coherent partitioning between analog and digital, hardware and software, tools and methodology. To make an informed choice among the available devices, what the designer needs are benchmarks that are specific to automotive applications, and which provide a realistic representation of how the device will perform in the automotive environment. This presentation will explore the role of new benchmarks in the development of complex automotive applications.
Technical Paper

Equations and Methods for Testing Hydrogen Fuel Consumption using Exhaust Emissions

2008-04-14
2008-01-1036
Although hydrogen ICE engines have existed in one sort or another for many years, the testing of fuel consumption by way of exhaust emissions is not yet a proven method. The current consumption method for gasoline- and diesel-fueled vehicles is called the Carbon-Balance method, and it works by testing the vehicle exhaust for all carbon-containing components. Through conservation of mass, the carbon that comes out as exhaust must have gone in as fuel. Just like the Carbon-Balance method for gas and diesel engines, the new Hydrogen-Balance equation works on the principle that what goes into the engine must come out as exhaust components. This allows for fuel consumption measurements without direct contact with the fuel. This means increased accuracy and simplicity. This new method requires some modifications to the testing procedures and CVS (Constant Volume Sampling) system.
Technical Paper

Advanced Gasoline Engine Management Platform for Euro IV & CHN IV Emission Regulation

2008-06-23
2008-01-1704
The increasingly stringent requirements in relation to emission reduction and onboard diagnostics are pushing the Chinese automotive industry toward more innovative solutions and a rapid increase in electronic control performance. To manage the system complexity the architecture will require being well structure on hardware and software level. The paper introduces GEMS-K1 (Gasoline Engine Management System - Kit 1). GEMS-K1 is a platform being compliant with Euro IV emission regulation for gasoline engines. The application software is developed using modeling language, the code is automatically generated from the model. The driver software has a well defined structure including microcontroller abstraction layer and ECU abstraction layer. The hardware is following design rules to be robust, 100% testable and easy to manufacture. The electronic components use the latest innovation in terms of architecture and technologies.
Technical Paper

Managing Automobile Energy and Pollution - Electronics the Ultimate Solution

2008-01-09
2008-28-0026
The number of vehicles in world has been steadily increasing over the years. Asia Pacific is blessed to have the fastest growth rate in the world, with China experiencing over 20% vehicle production growth in the recent and coming years. As India jumps on this explosive bandwagon which could see growth rates higher than China, there is a need to understand the environmental and cost aspects arising from the vast increase of automobiles. The need to protect the environment, combined with the limited resource of oil, has led to the need for more fuel-efficient vehicles with intelligent engine and transmission control systems. This paper/presentation will look into the tough emissions regulations, lower CO2 requirement, different fuels and their efficiency, alternative fuel and the infrastructure to support such a paradigm shift, cost to achieve the desired, and GEMS-K1 (Gasoline Engine Management System - Kit 1) as a solution to meet some of the issues mentioned.
Technical Paper

A New Method for the Investigation of Unburned Oil Emissions in the Raw Exhaust of SI Engines

1998-10-19
982438
The study of oil emission is of essential interest for the engine development of modern cars, as well as for the understanding of hydrocarbon emissions especially during cold start conditions. A laser mass spectrometer has been used to measure single aromatic hydrocarbons in unconditioned exhaust gas of a H2-fueled engine at stationary and transient motor operation. These compounds represent unburned oil constituents. The measurements were accompanied by FID and GC-FID measurements of hydrocarbons which represent the burned oil constituents. The total oil consumption has been determined by measuring the oil sampled by freezing and weighing. It has been concluded that only 10 % of the oil consumption via exhaust gas has burned in the cylinders. A correlation of the emission of single oil-based components at ppb level detected with the laser mass spectrometer to the total motor oil emission has been found.
Technical Paper

Embedded System Tool to Support Debugging, Calibration, Fast Prototyping and Emulation

2004-03-08
2004-01-0304
Infineon's latest high-end automotive microcontrollers like TC1796 are complex Systems On Chip (SoC) with two processor cores and up to two internal multi-master buses. The complex interaction between cores, peripherals and environment provides a big challenge for debugging. For mission critical control like engine management the debugging approach must not be intrusive. The provided solution are dedicated Emulation Devices which are able to deal with several 10 Gbit/s of raw internal trace data with nearly no cost adder for mass production and system design. Calibration, which is used later in the development cycle, has different requirements, but is covered by the Emulation Devices as well. The architecture of TC1796ED comprises the unchanged TC1796 silicon layout, extended by a full In-Circuit Emulator (ICE) and calibration overlay memory on the same die. In most cases, the only debug/calibration tool hardware needed is a USB cable.
Technical Paper

Cost Efficient Integration for Decentralized Automotive ECU

2004-03-08
2004-01-0717
As the demand for enhanced comfort, safety and differentiation with new features continues to grow and as electronics and software enable most of these, the number of electronic units or components within automobiles will continue to increase. This will increase the overall system complexity, specifically with respect to the number of controller actuators such as e-motors. However, hard constraints on cost and on physical boundaries such as maximum power dissipation per unit and pin-count per unit/connector require new solutions to alternative system partitioning. Vehicle manufacturers, as well as system and semiconductor suppliers are striving for increased scalability and modularity to allow for most cost optimal high volume configurations while featuring platform reuse and feature differentiation. This paper presents new semiconductor based approaches with respect to technologies, technology mapping and assembly technologies.
Technical Paper

Smart IGBT for Advanced Ignition Systems

2001-03-05
2001-01-1220
Increasing fuel costs and emission regulations force the car manufacturers to develop powerful but efficient engines. The 3-liter car (3-liter/100 km fuel consumption → 80 miles/gallon) is one of the slogans. To fulfill these requirements a fully electronic controlled Engine Management is necessary. Carburetor systems are replaced by fuel injection systems. Direct injection for Diesel as well as for gasoline engines is the clear trend for the future. The mechanical throttle systems, used for a long time will not fit to the requirements of direct injection. A DC motor for electronic throttle control in conjunction with λ regulation and exhaust gas recirculation are the key elements for low emission cars. Also the automotive ignition system is in a process of change today.
Technical Paper

2D Mapping and Quantification of the In-Cylinder Air/Fuel-Ratio in a GDI Engine by Means of LIF and Comparison to Simultaneous Results from 1D Raman Measurements

2001-05-07
2001-01-1977
The optimization of the vaporization and mixture formation process is of great importance for the development of modern gasoline direct injection (GDI) engines, because it influences the subsequent processes of the ignition, combustion and pollutant formation significantly. In consequence, the subject of this work was the development of a measurement technique based on the laser induced exciplex fluorescence (LIF), which allows the two dimensional visualization and quantification of the in-cylinder air/fuel ratio. A tracer concept consisting of benzene and triethylamine dissolved in a non-fluorescent base fuel has been used. The calibration of the equivalence ratio proportional LIF-signal was performed directly inside the engine, at a well known mixture composition, immediately before the direct injection measurements were started.
Technical Paper

Virtual testing driven development process for side impact safety

2001-06-04
2001-06-0251
A new simulation tool was established and approved by TRW as part of the continuous improvement of the development process. This tool allows the OEM and the system supplier to keep high quality even with further reduced development times. The introduction of the tool in a side air-bag development program makes it possible to ensure high development confidence with a reduced number of vehicle crash tests and late availability of interior component parts.
Technical Paper

Problems of Partial Sample Systems for Modal Raw Exhaust Mass Emission Measurement

2003-03-03
2003-01-0779
Changing of emission levels leads to an increasing demand for a satisfying solution to measure mass emissions of motor vehicles on both, engine and chassis dynamometers. Partial flow systems may fit to the demands. These systems require an exact determination of exhaust volume flow and time aligned concentration measurement. This paper will address these issues and problems related with partial flow sampling. Several exhaust flow measurement systems have been studied and integrated mass results have been checked against the full flow CVS. As the investigations indicate, modal mass calculation from sampling direct exhaust at the end of tailpipe is feasible but not a satisfying solution in equivalency and repeatability in comparison to CVS-results. This is especially the case on emission levels near or below ULEV.
Technical Paper

System-Level Partitioning Using Mission-Level Design Tool for Electronic Valve Application

2003-03-03
2003-01-0865
In defining innovative and cost-effective chip sets for future automotive applications, system architects need high-level tools that allow them to rapidly determine the best silicon partitioning for a given application in terms of system performance as well as cost. The tool needs to be flexible, modular, and swift such that the system designer can perform abstract simulation iterations quickly for various functional partitioning scenarios, without requiring excessive computer resources. The tool must also be portable and adaptable to provide a simulation environment suitable to systems- or car-manufacturers for in-depth applications simulation and architecture assessment. The semiconductor component definition process using such a “mission-level” design tool for the automotive application electronic valve will be demonstrated. Methods for the analysis of electronic valve control system architectures using mission-level simulation will be developed.
Technical Paper

HC Measurements by Means of Flame Ionization: Background and Limits of Low Emission Measurement

2003-03-03
2003-01-0387
Flame Ionization Detectors (FID) can be used to detect organic hydrocarbons that occur in plastics, lacquers, adhesives, solvents and gasoline. These substances are ionized in the hydrogen flame of the FID. The ionization current that is produced depends on the amount of hydrocarbon in the sample. With the lowering of emissions limits, measuring instruments, including the FID, have to be able to detect very low values. For SULEV (Super-Ultra Low Emissions Vehicle) measurements the accuracy and also the general applicability of the CVS (Constant Volume Sampling) measuring technique are now questioned. Basic understanding is necessary to ask the right questions. One important issue is the science behind the measurement principle of the FID. And in this case especially the influence of contamination of the operating gases, cross sensitivity and data processing on the Limit of Detection (LOD).
X