Refine Your Search

Topic

Author

Search Results

Journal Article

Influence of the Upper Body of Pedestrians on Lower Limb Injuries and Effectiveness of the Upper Body Compensation Method of the FlexPLI

2015-04-14
2015-01-1470
Current legform impact test methods using the FlexPLI have been developed to protect pedestrians from lower limb injuries in collisions with low-bumper vehicles. For this type of vehicles, the influence of the upper body on the bending load generated in the lower limb is compensated by setting the impact height of the FlexPLI 50 mm above that of pedestrians. However, neither the effectiveness of the compensation method of the FlexPLI nor the influence of the upper body on the bending load generated in the lower limb of a pedestrian has been clarified with high-bumper vehicles. In this study, therefore, two computer simulation analyses were conducted in order to analyze: (1) The influence of the upper body on the bending load generated in the lower limb of a pedestrian when impacted by high-bumper vehicles and (2) The effectiveness of the compensation method for the lack of the upper body by increasing impact height of the FlexPLI for high-bumper vehicles.
Journal Article

Construction of an ISO 26262 C Class Evaluation Method for Motorcycles

2016-11-08
2016-32-0059
For applying ISO 26262 to motorcycles, controllability classification (C class evaluation) by expert riders is considered an appropriate technique. Expert riders have evaluated commercial product development for years and can appropriately conduct vehicle tests while observing safety restrictions (such as avoiding the risk of falling). Moreover, expert riders can ride safely and can stably evaluate motorcycle performance even if the test conditions are close to the limits of vehicle performance. This study aims to construct a motorcycle C class evaluation method based on an expert rider’s subjective evaluation. On the premise that expert riders can rate the C class, we improved a test procedure that used a subjective evaluation sheet as the concrete C class evaluation method for an actual hazardous event.
Journal Article

Prediction of Spray Behavior in Injected by Urea SCR Injector and the Reaction Products

2017-10-08
2017-01-2375
In the urea SCR system, urea solution is injected by injector installed in the front stage of the SCR catalyst, and NOx can be purified on the SCR catalyst by using NH3 generated by the chemical reaction of urea. NH3 is produced by thermolysis of urea and hydrolysis of isocyanic acid after evaporation of water in the urea solution. But, biuret and cyanuric acid which may cause deposit are sometimes generated by the chemical reactions without generating NH3. Spray behavior and chemical reaction of urea solution injected into the tail-pipe are complicated. The purpose of this study is to reveal the spray behavior and NH3 generation process in the tail-pipe, and to construct the model capable of predicting those accurately. In this report, the impingement spray behavior is clarified by scattered light method in high temperature flow field. Liquid film adhering to the wall and deposit generated after evaporation of water from the liquid film are photographed by the digital camera.
Technical Paper

JCAPII Cross Check Tests of Fast Electrical Mobility Spectrometers for Evaluation of Accuracy

2007-10-29
2007-01-4081
Crosscheck tests of fast electrical mobility spectrometers, Differential Mobility Spectroscopy (DMS) and Engine Exhaust Particle Sizer(EEPS), were conducted to evaluate the accuracy of fine particle measurement. Two kinds of particles were used as test particles for the crosscheck test of instruments: particles emitted from diesel vehicles and diluted in a full dilution tunnel, and particles generated by CAST. In the steady state tests, it was confirmed that the average concentration of each instrument was within the range of ±2σ from the average concentration of all the same type of instruments. In the transient tests, it is verified that the instruments have almost equal sensitivity. For application of the fast electrical mobility spectrometers to evaluation of particle number and size distributions, it is essential to develop a calibration method using reference particle counters and sizers (CPC, SMPS, etc.) and maintenance methods appropriate for each model.
Technical Paper

Data Processing Method of Finger Blood Pulse for Estimating Human Internal States

1998-02-23
980016
It was found that the finger blood pulse shows various fluctuations in different driving conditions. The nature of the finger blood pulse fluctuations was used for estimating a driver's internal state. Indexes suitable for expressing the fluctuations were moment and density; these indexes were calculated by using a return-map. However these results were measured by an off-line system and were calculated after the experiment. So, an on-line (real-time) system was needed in order to construct a driver's internal state monitoring system. As a first step, an online system for estimating the human internal state was developed. This system is available for estimating the human internal state every 30 seconds.
Technical Paper

Performance Evaluation of Impact Responses of the Sid-Iis Small Side Impact Dummy

1998-05-31
986149
A series of side impact tests have been conducted to evaluate the biofidelity of the latest prototype of a small side impact dummy, SID-II s β+(plus). The tests were lateral impacts for the thorax, shoulder, and pelvis, as well as lateral drops for the head, thorax, abdomen, and pelvis. The test data were compared to the response target corridors that were estimated by scaling the cadaver test data to a smaller occupant. The test results show that the head, should, thorax, abdomen and pelvis of the SID-II s β+ either completely or close to meets the response target corridors, and that its biofidelity has been improved from the previous dummy SID II s B-prototype.
Technical Paper

Improvement of Foot FE Model Based on the Movement of Bones during Heel Impact

2004-03-08
2004-01-0313
Frontal vehicle collisions often result in foot injury of the front seat occupant. Therefore, it is very important to understand the mechanism of the foot injury. For that purpose, several impact experiments have been conducted using a partial human lower extremity. In addition, recently several impact response analyses using a human FE model have been conducted to understand the mechanism. In the present circumstances, a verified FE model is needed, and the verification of kinematical biofidelity is very important in the first place. In this connection, a foot FE model (based on an existing human FE model) was improved to create a foot FE model, which can be used for study of foot injury mechanism in this research. And the kinematics of foot bones of the model was verified by comparing the bone movements of the FE model with the movement of human foot during heel impact.
Technical Paper

Development of an FE Flexible Pedestrian Leg-form Impactor (Flex-PLI 2003R) Model and Evaluation of its Biofidelity

2004-03-08
2004-01-1609
A biofidelic flexible pedestrian leg-form impactor, called Flex-PLI, was developed by the Japan Automobile Manufactures Association, Inc. (JAMA) and the Japan Automobile Research Institute (JARI). Its latest version is called Flex-PLI 2003. The Flex-PLI 2003 responses have been validated at the component level (thigh, leg, and knee independently) but not at the assembly level (thigh-knee-leg complex). Furthermore, there was no FE Flex-PLI model. This research developed a FE Flex-PLI 2003R model (Flex-PLI 2003R means that the thigh and leg mass of Flex-PLI 2003 is adjusted to AM 50). The FE Flex-PLI 2003R model biofidelity has been evaluated at both the component level and the assembly level, where it demonstrated high biofidelity.
Technical Paper

Injury Pattern and Response of Human Thigh under Lateral Loading Simulating Car-Pedestrian Impact

2004-03-08
2004-01-1603
The main objective of the present study is to determine experimentally the injury patterns and response of the human thigh in lateral impacts simulating more closely the real impact conditions in car-pedestrian accidents. We conducted in-vitro experiments on thirteen thighs of eight completely intact Post Mortem Human Subjects (PMHSs). The thigh was hit by a ram at a speed of 35 km/h at the mid-shaft of the femur in each completely intact PMHS. Since the effect of cumulative injuries should be avoided, each thigh was impacted only once. Three impact energies were used; 450J, 600J and 700J. The PMHS motion was not constrained so as to simulate the walking posture of a pedestrian. We analyzed the peak values of the impact force of the ram and the femur acceleration. Injury was assessed by dissecting the lower extremities.
Technical Paper

A new legform impactor for evaluation of car aggressiveness in car-pedestrian accidents

2001-06-04
2001-06-0174
The goal of the present study was to develop a new legform impactor that accurately represents both the impact force (i.e., force between the leg and impacting mass)and leg kinematics in lateral impacts simulating car-pedestrian accidents. In its development we utilized the knee joint of the pedestrian dummy called Polar-2 (HONDA R&D) in which the cruciate and collateral ligaments are represented by means of springs and cables, the geometry of the femoral condyles is simplified using ellipsoidal surfaces, and the tibial meniscus is represented by an elastomeric pad. The impactor was evaluated by comparing its responses with published experimental results obtained using postmortem human subjects (PMHS). The evaluation was done under two conditions: 1)impact point near the ankle area (bending tests),and 2)impact point 84 mm below the knee joint center (shearing tests). Two impact speeds were used: 5.56 m/s and 11.11 m/s.
Technical Paper

J-NCAP: Today and tomorrow

2001-06-04
2001-06-0157
The New Car Assessment Program in Japan (JNCAP) was launched in 1995 in order to improve car safety performance. According to this program, installation conditions of safety devices and the results for braking performance and full- frontal crash tests are published every year. Introduction of JNCAP significantly increases the installation rate of safety devices and contributes much in enhancement of safety as seen in the decrease in the average injury severity of drivers and passengers. Side impact and offset frontal crash tests were introduced in 1999 and 2000, respectively. At present, the overall crash safety rating is carried out based on the results of the full-frontal, offset frontal, and side impact tests.
Technical Paper

Japanese research activity on future side impact test procedures

2001-06-04
2001-06-0155
This paper summarizes a future side impact test procedure based on the Japanese presentation at the recent IHRA Side Impact WG meeting. Under current Japanese regulations, the MDB specifications and test procedures were determined based on a market study more than ten years ago. Thus, they may not reflect current automobile characteristics, the actual accident situation, and crash test results. In this study (1) the vehicle types, velocity of striking and struck vehicles, body injury regions, causes of injuries, etc., are reviewed with reference to the latest Japanese side impact accident data. The occupant percentages for the non-struck-side, rear seat and for female occupants as well as the injury levels were analyzed. (2) To determine the MDB specifications, based on data from passenger car models registered in 1998, the curb mass, geometry and stiffness were examined. (3) For factorial analysis, side impact tests were performed as for real accidents.
Technical Paper

JNCAP: Developing overall rating protocol

2001-06-04
2001-06-0156
The Japan New Car Assessment Program (JNCAP) was launched in 1995 in order to improve car safety performance. According to this program, installation conditions of safety devices and the results for braking performance and full- frontal crash test are published every year. The side impact test was introduced in 1999. In 2000, the offset frontal crash test was also introduced. From the viewpoint of such a diversification of the crash tests, an overall assessment method for the safety of cars which reflects road accidents has been demanded. In this study, we have examined a new overall assessment method capable of reflecting the traffic accident situation in Japan using methods employed or planned by USA-NCAP, Euro-NCAP, TUB-NCAP and others as references. As the basic concept, JNCAP conducts three types of crash tests including the full-frontal crash test, offset frontal crash test, and side impact test to assess the dummy injury parameters.
Technical Paper

Reconsideration of injury criteria for pedestrian subsystem legform test~Problems of rigid legform impactor

2001-06-04
2001-06-0206
The legform impactor proposed by EEVC/WG17 is composed of a rigid thigh segment and a rigid lower leg segment. Human bone, however, has flexibility, causing some differences between the EEVC rigid legform impactor and the human leg. This research analyzes the influence of the differences (rigid versus flexible) on the injury criteria. It also reanalyzes the upper tibia acceleration with regard to the fracture index. The rigid legform impactor cannot simulate bone bending motion, so the injury criteria should consider the legform rigidity. It means the injury criteria need to include the bone bending effect. From several PMHS test results, the shearing displacement becomes 23 mm and 20 degrees for bending angle including the bone bending effect. However, the bone bending effect will change with the loading conditions. Therefore, to establish a certain injury criteria for a rigid legform impactor is impossible. To solve this problem, a flexible legform impactor seems to be needed.
Technical Paper

Research on bus passenger safety in frontal impacts

2001-06-04
2001-06-0210
Guidelines with regard to the body strength of buses have been drawn up in Japan. We now pass to the second step in research to assure the greater safety of bus crews and passengers by launching a study on further reduction of collision injuries to bus occupants. As a way to reduce such passenger injuries, our focus is the optimization of energy absorption, the arrangement of equipment on the passenger seat back, the seat frame construction, mounting and so on. The study was conducted using an experimental method together with FEM computer simulation. The findings from a sled impact test simulating a seat in a bus in a frontal collision are stated as follows. 1.Further consideration should be given to the present conventional ELR two-point seat belt. 2.One way to reduce passenger injury is to optimize the space between seats.
Technical Paper

Research on Severity Class Evaluation Based on Various Crash Situations Involved with Motorcycles for ISO 26262

2016-11-08
2016-32-0057
ISO 26262 was established in 2011 as a functional safety standard for road vehicles. This standard provides safety requirements according to ASIL (Automotive Safety Integrity Level) in order to avoid unreasonable residual risk caused by malfunctioning behavior of electrical and/or electronic systems. The ASIL is determined by considering the estimate of three factors including injury severity. While applicable only to passenger cars at present, motorcycles will be included in the scope of application of ISO 26262 in the next revision. Therefore, our previous study focused on severity class evaluation for motorcycles. A method of classifying injury severity according to vehicle speed was developed on the basis of accident data. In addition, a severity table for motorcycles was created using accident data in representative collision configurations involved with motorcycles in Japan.
Technical Paper

Simplifying the Structural Design of the Advanced Pedestrian Legform Impactor for Use in Standardized Testing

2018-04-03
2018-01-1049
The advanced Pedestrian Legform Impactor (aPLI) incorporates a number of enhancements for improved lower limb injury prediction capability with respect to its predecessor, the FlexPLI. The aPLI also incorporates a simplified upper body part (SUBP), connected to the lower limb via a mechanical hip joint, that expands the impactor’s applicability to evaluate pedestrian’s lower limb injury risk also in high-bumper cars.As the aPLI has been developed to be used in standardized testing, further considerations on the impactor’s manufacturability, robustness, durability, usability, and repeatability need to be accounted for.. The aim of this study is to define and verify, by means of numerical analysis, a battery of design modifications that may simplify the manufacturing and use of physical aPLIs, without reducing the impactors’ biofidelity. Eight candidate parameters were investigated in a two-step numerical analysis.
Technical Paper

Assessment Method of Effectiveness of Passenger Seat Belt Reminder

2012-04-16
2012-01-0050
Seat belts for rear passengers are not commonly used, even though they can significantly reduce fatalities. A passenger seat belt reminder (PSBR) is installed in order to encourage seat belt use, but the effectiveness of PSBRs on the rear seat passenger has not yet been proven. We have developed a methodology to assess PSBR effectiveness. There are two pathways to encourage seat belt use. The first is that PSBR directly facilitates the passenger's use. The second is to motivate the driver request passengers to use seat belts. In the experiment, we asked participants sitting in the driver's seat to select one of five ranks of likelihood to encourage the passenger when a PSBR was presented. We also asked participants sitting in the rear passenger seat to select the rank of likelihood to use the belt voluntarily with PSBR and that to use the belt when the driver requested. The degree of likelihood was quantified by averaging the assigned percentage values to the ranks.
Technical Paper

Identification of Vehicle Dynamics Under Lateral Wind Disturbance Using Autoregressive Model

1993-11-01
931894
Analysis of vehicle motion under conditions of lateral wind disturbance is important for evaluating handling properties and vehicle stability. In the analysis, identification of vehicle dynamics is often carried out, and data for the identification is usually measured by a test with a lateral wind generator. However, vehicle transient response in the test usually converges for a short duration because of the limitation of the wind width. If the identification carried out from this data by conventional methods such as FFT, fine frequency resolution is not gained. In this research, an identification method based on the autoregressive model (AR-method), which is robust for a phenomenon of short duration, has been applied to the analysis of vehicle dynamics under the conditions in order to solve the above issue.
Technical Paper

Injury Pattern and Tolerance of Human Pelvis Under Lateral Loading Simulating Car-pedestrian Impact

2003-03-03
2003-01-0165
Numerous studies of pelvic tolerance to lateral impact aimed at protecting car occupants have been conducted on Post Mortem Human Subjects (PMHSs) in a sitting posture. However, it remains unclear whether or not the results of these studies are relevant when evaluating the injury risk to walking pedestrians impacted by a car. Therefore, the first objective of the present study is to determine the injury tolerance and to describe the injury mechanisms of the human pelvis in lateral impacts simulating car-pedestrian accidents. The second objective is to obtain data for validation of mathematical models of the pelvis. In-vitro experiments were conducted on twelve PMHSs in simulated standing position. The trochanter of each PMHS was hit by a ram at speed of 32 km/h, and the pelvic motion was constrained by a bolt. This type of pelvic constraint is difficult to simulate in mathematical models.
X