Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

The CHEMCAM Instrument on Mars Science Laboratory (MSL 11): First Laser Induced Breakdown Spectroscopy Instrument in Space!

2009-07-12
2009-01-2397
ChemCam is one of the 10 instrument suites on the Mars Science Laboratory, a martian rover being built by Jet Propulsion Laboratory, for the next NASA mission to Mars (MSL 2009). ChemCam is an instrument package consisting of two remote sensing instruments: a Laser-Induced Breakdown Spectrometer (LIBS) and a Remote Micro-Imager (RMI). LIBS provides elemental compositions of rocks and soils, while the RMI places the LIBS analyses in their geomorphologic context. Both instruments rely on an autofocus capability to precisely focus on the chosen target, located at distances from the rover comprised between 1 and 9 m for LIBS, and 2 m and infinity for RMI. ChemCam will help determine which samples, within the vicinity of the MSL rover, are of sufficient interest to use the contact and in-situ instruments for further characterization.
Technical Paper

Improved Electrical Properties of n-Type SiGe Alloys

1992-08-03
929419
The effect of changes in the carrier concentration and mobility for heavily doped n-type SiGe on the electrical power factor has been investigated. It has been shown that power factors of 37-40 μV/cm-K2 can be achieved with carrier concentrations of 2.0 - 2.5 × 1020 cm-3 and mobilities of 38-40 cm2/V-sec. Many samples with suitable carrier concentration do not have high mobilities and some rationale for this behavior is presented. Initial results are presented on fabrication of n-type samples from ultra-fine powders. The emphasis in this work is to achieve thermal conductivity reductions by adding inert particles to scatter mid-frequency phonons.
Technical Paper

Miniaturized Thermoelectric Power Sources

1999-08-02
1999-01-2569
Advanced thermoelectric microdevices integrated into thermal management packages and low power, electrical power source systems are of interest for a variety of space and terrestrial applications. By making use of macroscopic film technology, microgenerators operating across relatively small temperature differences can be conceptualized for a variety of high heat flux or low heat flux heat source configurations. The miniaturization of state-of-the-art thermoelectric module technology based on Bi2Te3 alloys is limited due to mechanical and manufacturing constraints for thermoelement dimensions (100-200μm thick minimum) and number (100-200 legs maximum). We are developing novel thermoelectric microdevices combining high thermal conductivity substrate materials such as diamond or even silicon, thin film metallization and patterning technology, and electrochemical deposition of 10-50μm thick thermoelectric films.
Technical Paper

Combined Loads, Vibration, and Modal Testing of the QuikSCAT Spacecraft

1999-10-19
1999-01-5551
Combining the quasi-static loads, workmanship verification, and model validation tests of aerospace hardware into a single vibration test sequence can considerably reduce schedule and cost. The enabling factor in the implementation of the combined dynamic testing approach is the measurement of the dynamic forces exerted on the test item by the shaker. The dynamic testing of the QuikSCAT spacecraft is discussed as an example of a successful combined loads, workmanship, and model validation test program.
X