Refine Your Search

Topic

Affiliation

Search Results

Journal Article

Optimization Matching of Powertrain System for Self-Dumping Truck Based on Grey Relational Analysis

2015-04-14
2015-01-0501
In this paper, the performance simulation model of a domestic self-dumping truck was established using AVL-Cruise software. Then its accuracy was checked by the power performance and fuel economy tests which were conducted on the proving ground. The power performance of the self-dumping truck was evaluated through standing start acceleration time from 0 to 70km/h, overtaking acceleration time from 60 to 70km/h, maximum speed and maximum gradeability, while the composite fuel consumption per hundred kilometers was taken as an evaluation index of fuel economy. A L9 orthogonal array was applied to investigate the effect of three matching factors including engine, transmission and final drive, which were considered at three levels, on the power performance and fuel economy of the self-dumping truck. Furthermore, the grey relational grade was proposed to assess the multiple performance responses according to the grey relational analysis.
Technical Paper

Research on High-efficiency Test Method of Vehicle AEB based on High-precision Detection of Radar Turntable Encoder

2021-10-11
2021-01-1273
With the increasingly complex traffic environment, the vehicle AEB system needs to go through a large number of testing processes, in order to drive more safely on the road. For speeding up the development process of AEB and solve the problems of long cycle, high cost and low efficiency in AEB testing, in this paper, a millimeter wave radar turntable is built, and a high-precision detection algorithm of turntable encoder is designed, at the same time, a test method of vehicle AEB based on the detection data of radar turntable encoder is designed. The verification results show that methods described in this paper can be used to develop the vehicle AEB test algorithm efficiently.
Technical Paper

Parameter Matching of Planetary Gearset Characteristic Parameter of Power-Spilt Hybrid Vehicle

2021-09-16
2021-01-5088
To quickly and efficiently match the planetary gearset characteristic parameter of power-spilt hybrid vehicles so that their oil-saving potential can be maximized, this study proposes a parameter matching method that comprehensively considers energy management strategy and driving cycle based on an analysis of vehicle instantaneous efficiency. The method is used to match the planetary characteristic parameter of a power-split hybrid light truck. The relevant conclusions are compared with the influence of various planetary characteristic parameters on fuel consumption obtained through simulation under typical operating conditions. The simulation results show that the influence laws of the various planetary characteristic parameters on vehicle average efficiency are similar to those on fuel consumption. The proposed parameter-matching method based on vehicle efficiency analysis can effectively match the planetary characteristic parameter for power-split hybrid powertrains.
Technical Paper

Short-Term Vehicle Speed Prediction Based on Back Propagation Neural Network

2021-08-10
2021-01-5081
In the face of energy and environmental problems, how to improve the economy of fuel cell vehicles (FCV) effectively and develop intelligent algorithms with higher hydrogen-saving potential are the focus and difficulties of current research. Based on the Toyota Mirai FCV, this paper focuses on the short-term speed prediction algorithm based on the back propagation neural network (BP-NN) and carries out the research on the short-term speed prediction algorithm based on BP-NN. The definition of NN and the basic structure of the neural model are introduced briefly, and the training process of BP-NN is expounded in detail through formula derivation. On this basis, the speed prediction model based on BP-NN is proposed. After that, the parameters of the vehicle speed prediction model, the characteristic parameters of the working condition, and the input and output neurons are selected to determine the topology of the vehicle speed prediction model.
Journal Article

Vehicle Longitudinal Control Algorithm Based on Iterative Learning Control

2016-04-05
2016-01-1653
Vehicle Longitudinal Control (VLC) algorithm is the basis function of automotive Cruise Control system. The main task of VLC is to achieve a longitudinal acceleration tracking controller, performance requirements of which include fast response and high tracking accuracy. At present, many control methods are used to implement vehicle longitudinal control. However, the existing methods are need to be improved because these methods need a high accurate vehicle dynamic model or a number of experiments to calibrate the parameters of controller, which are time consuming and costly. To overcome the difficulties of controller parameters calibration and accurate vehicle dynamic modeling, a vehicle longitudinal control algorithm based on iterative learning control (ILC) is proposed in this paper. The algorithm works based on the information of input and output of the system, so the method does not require a vehicle dynamics model.
Technical Paper

A Path Planning and Model Predictive Control for Automatic Parking System

2020-04-14
2020-01-0121
With the increasing number of urban cars, parking has become the primary problem that people face in daily life. Therefore, many scholars have studied the automatic parking system. In the existing research, most of the path planning methods use the combined path of arc and straight line. In this method, the path curvature is not continuous, which indirectly leads to the low accuracy of path tracking. The parking path designed using the fifth-order polynomial is continuous, but its curvature is too large to meet the steering constraints in some cases. In this paper, a continuous-curvature parking path is proposed. The parking path tracker based on Model Predictive Control (MPC) algorithm is designed under the constraints of the control accuracy and vehicle steering. Firstly, in order to make the curvature of the parking path continuous, this paper superimposes the fifth-order polynomial with the sigmoid function, and the curve obtained has the continuous and relatively small curvature.
Technical Paper

Research on Control Strategy Optimization for Shifting Process of Pure Electric Vehicle Based on Multi-Objective Genetic Algorithm

2020-04-14
2020-01-0971
With more and more countries proposing timetables for stopping selling of fuel vehicles, China has also issued a “dual-slope” policy. As electric vehicles are the most promising new energy vehicle, which is worth researching. The integration and control of the motor and gearbox have gradually become a hot research topic due to low cost with better performance. This paper takes an electric vehicle equipped with permanent magnet synchronous motor and two-gear automatic transmission without synchronizer and clutch as the research object.
Journal Article

Semi-Active Vibration Control of Landing Gear Using Magneto-Rhelological Dampers

2011-10-18
2011-01-2583
Magneto-rhelological(MR) dampers are devices that use rheological fluids to modify the mechanical properties of fluid absorber. The mechanical simplicity, high dynamic range, large force capacity, lower power requirements, robustness and safe manner of operation have made MR dampers attractive devices for semi-active real-time control in civil, aerospace and automotive applications. Landing gear is one of the most essential components of the aircraft, which plays an extreme important role in preventing the airframe from vibration and excessive impact forces, improving passenger comfortable characteristics and increasing aircraft flight safety. In this paper, the semi-active system used in landing gear damping controller design, simulation, and the vibration test-bed are discussed and researched. The MR dampers employed in landing gear system were designed, manufactured and characterized as available semi-active actuators.
Journal Article

Cooperative Optimization of Vehicle Ride Comfort and Handling Stability by Integrated Control Strategy

2012-04-16
2012-01-0247
Vehicle needs suspension and steering systems with different features to fit different driving conditions. In normal straight driving condition, soft suspension and heavy steering systems are needed to achieve better ride comfort and straight line driving stability; in turning conditions, hard suspension and lightweight steering systems are needed to get better handing stability. The semi-active suspension system with Magneto-Rheological dampers can improve the ride comfort and handling performance of vehicle. Electrical power steering system is developed rapidly due to its portable and flexible operations as well as stable steering performance.
Technical Paper

Development and Validation of New Control Algorithm for Parallel Hybrid Electric Transit Bus

2006-10-31
2006-01-3571
The new control algorithm for parallel hybrid electric vehicle is presented systematically, in which engine operation points are limited within higher efficient area by the control algorithm and the state of charge (SOC) is limited in a range in order to enhance the batteries' charging and discharging efficiency. In order to determine the ideal operating point of the vehicle's engine, the control strategy uses a lookup table to determine the torque output of the engine. The off-line simulation model of parallel HEV power train is developed which includes the control system and controlled objective (such as engine, electric motor, battery pack and so on). The results show that the control algorithm can effectively limite engine and battery operation points and much more fuel economy can be achieved than that of conventional one.
Technical Paper

Virtual Simulation Research on Vehicle Ride Comfort

2006-10-31
2006-01-3499
In this paper, a computer model of a multi-purpose vehicle (MPV) is built to study vehicle ride comfort by multi-body system dynamic theory. Virtual test rigs are developed to perform natural body frequency tests and random road input tests on the complete vehicle multi-body dynamic model. By comparing simulation results with field test results, the accuracy of the model is validated and the feasibility of virtual test rigs is established.
Technical Paper

Research on Compensation Redundancy Control for Basic Force Boosting Failure of Electro-Booster Brake System

2020-04-14
2020-01-0216
As a new brake-by-wire solution, the electro-booster (Ebooster) brake system can work with the electronic stability program (ESP) equipped in the real vehicle to realize various excellent functions such as basic force boosting (BFB), active braking and energy recovery, which is promoting the development of smart vehicles. Among them, the BFB is the function of Ebooster's servo force to assist the driver's brake pedal force establishing high-intensity braking pressure. After the BFB function failure of the Ebooster, it was not possible to provide sufficient brake pressure for the driver's normal braking, and eventually led to traffic accidents. In this paper, a compensation redundancy control strategy based on ESP is proposed for the BFB failure of the self-designed Ebooster.
Technical Paper

The Integrated Control of SBW and 4WS

2007-08-05
2007-01-3674
Steer-by-wire System is a new conception for steering system, which eliminates those mechanical linkages between hand steering wheel and front wheels, and communicates among the driver and wheels by signals and controllers. All these facilities improve the safety and conformability of the vehicle system and get rid of the mechanical constricts. This paper proposed three vehicle stability control strategies, including front wheel control, yaw rate feedback control and yaw rate& acceleration feedback control. We compared these three control methods by simulation and simulator tests. We also studied the integrated control algorithm of Steer-by-Wire System and 4WS, and compared with 2WS for SBW and the classical 4WS.
Technical Paper

Support Vector Machine Theory Based Shift Quality Assessment for Automated Mechanical Transmission (AMT)

2007-04-16
2007-01-1588
In China there is a strong trend in the application of vehicles equipped with automatic transmissions in considering the complexity of traffic and the convenience of automatic transmissions. As a type of automatic transmission, automated mechanical transmission (AMT) shows great potential to be developed as a main transmission because of its simple structures, easy upgrade from manual transmission (MT) and low price. Support Vector Machine (SVM) is a new statistic method which could make a good prediction with limited training instances. Compared with Artificial Neutral Network (ANN), SVM can provide better genetic ability. In order to verify the ability of the new method, the model trained by one set of AMT car data was applied on some other AMT vehicles, and the predicted results were compared with subjective rating results by expert drivers and analyzed to identify the potential of this new assessment system.
Technical Paper

A Fuzzy On-Line Self-Tuning Control Algorithm for Vehicle Adaptive Cruise Control System with the Simulation of Driver Behavior

2009-04-20
2009-01-1481
Research of Adaptive Cruise Control (ACC) is an important issue of intelligent vehicle (IV). As we all known, a real and experienced driver can control vehicle's speed very well under every traffic environment of ACC working. So a direct and feasible way for establishing ACC controller is to build a human-like longitudinal control algorithm with the simulation of driver behavior of speed control. In this paper, a novel fuzzy self-tuning control algorithm of ACC is established and this controller's parameters can be tuned on-line based on the evaluation indexes that can describe how the driver consider the quality of dynamical characteristic of vehicle longitudinal dynamics. With the advantage of the controller's parameter on-line self-tuning, the computational workload from matching design of ACC controller is also efficiently reduced.
Technical Paper

An Adaptive PID Controller with Neural Network Self-Tuning for Vehicle Lane Keeping System

2009-04-20
2009-01-1482
Vehicle lane keeping system is becoming a new research focus of drive assistant system except adaptive cruise control system. As we all known, vehicle lateral dynamics show strong nonlinear and time-varying with the variety of longitudinal velocity, especially tire’s mechanics characteristic will change from linear characteristic under low speed to strong nonlinear under high speed. For this reason, the traditional PID controller and even self-tuning PID controller, which need to know a precise vehicle lateral dynamics model to adjust the control parameter, are too difficult to get enough accuracy and the ideal control quality. Based on neural network’s ability of self-learning, adaptive and approximate to any nonlinear function, an adaptive PID control algorithm with BP neural network self-tuning online was proposed for vehicle lane keeping.
Technical Paper

A Comparison of a Semi-Active Inerter and a Semi-Active Suspension

2010-10-05
2010-01-1903
Inerters have become a hot topic in recent years, especially in vehicle, train, and building suspension systems. The performance of a passive inerter and a semi-active inerter was analyzed and compared with each other and it showed that the semi-active inerter has much better performance than the passive inerter, especially with the Hybrid control method. Eight different layouts of suspensions were analyzed with a quarter car model in this paper. The adaptation of dimensionless parameters was considered for a semi-active suspension and the semi-active inerters. The performance of the semi-active inerter suspensions with different layouts was compared with a semi-active suspension with a conventional parallel spring-damper arrangement. It shows a semi-active suspension, with more simple configuration and lower cost, has similar or better compromise between ride and handling than a semi-active inerter with the Hybrid control.
Technical Paper

Parametric Design of Series Hybrid Power-train for Transit Bus

2003-11-10
2003-01-3371
Utilizing the developed off-line simulation model of series hybrid power train the study on the influence of components' parameters on acceleration performance and fuel economy of transit bus is completed. Based on these the guideline strategies of parametric design of series hybrid power train for transit bus are brought forward in this paper. Given the condition of propulsion requirement the parametric design for this transit bus are performed targeting minimizing fuel consumption. It is conclusion that the appropriate components' parameters determined by means of parametric design can make series hybrid transit bus achieve much better acceleration performance and much lower fuel equivalent consumption than that of baseline transit bus.
Technical Paper

Numerical and Experimental Investigation on Heat Exchange Performance for Heat Dissipation Module for Construction Vehicles

2017-03-28
2017-01-0624
In this work, a XD132 Road Roller from XCMG in China was employed as a research basis to study the heat exchange performance of the heat dissipation module under varied working conditions. The module in the XD132 consists of a cooling fan and three radiators. At first, the numerical investigation on the elementary units of radiators was performed to obtain Colburn j factor and Fanning friction f factor, which were used for the ε-NTU method to predict the radiator performance. The fan was numerically tested in a wind test tunnel to acquire the performance curve. The performance data from both investigations were transformed into the boundary conditions of the numerical vehicle model in a virtual tunnel. A field experiment was carried out to validate the simulation accuracy, and an entrance coefficient was proposed to discuss the performance regularity under four working conditions.
Technical Paper

A Multi-mode Control Strategy for EV Based on Typical Situation

2017-03-28
2017-01-0438
A multitude of recent studies are suggestive of the EV as a paramount representative of the NEV, its development direction is transformed from “individuals adapt to vehicles” to “vehicles serve for occupants”. The multi-mode drive control technology is relatively mature in traditional auto control sphere, however, a host of EV continues to use a single control strategy, which lacks of flexibility and diversity, little if nothing interprets the vehicle performances. Furthermore, due to the complex road environment and peculiarity of vehicle occupants that different requirement has been made for vehicle performance. To solve above problems, this paper uses the key technology of mathematical statistics process in MATLAB, such as the mean, linear fitting and discrete algorithms to clean up, screening and classification the original data in general rules, and based on short trips in the segments of kinematics analysis method to establish a representative of quintessential driving cycle.
X