Refine Your Search

Topic

Affiliation

Search Results

Journal Article

Exhaust Valve & Valve Seat Insert – Development for an Industrial LPG Application

2009-05-13
2009-01-1602
Automotive engines are regularly utilized in the material handling market where LPG is often the primary fuel used. When compared to gasoline, the use of gaseous fuels (LPG and CNG) as well as alcohol based fuels, often result in significant increases in valve seat insert (VSI) and valve face wear. This phenomenon is widely recognized and the engine manufacturer is tasked to identify and incorporate appropriate valvetrain material and design features that can meet the ever increasing life expectations of the end-user. Alternate materials are often developed based on laboratory testing – testing that may not represent real world usage. The ultimate goal of the product engineer is to utilize accelerated lab test procedures that can be correlated to field life and field failure mechanisms, and then select appropriate materials/design features that meet the targeted life requirements.
Journal Article

Factors Influencing Mass Collected During 2007 Diesel PM Filter Sampling

2009-04-20
2009-01-1517
EPA's 2007 Diesel particulate matter (DPM) standard requires a large reduction in total mass emissions. In practice, this amounts to a fractional reduction in elemental carbon emissions. The reduction is balanced by a fractional increase in the semi-volatile component, which is difficult to sample and quantify accurately at low concentrations using filter-based methods. In this work, we show how five imprecisely defined filter-sampling parameters influence the mass collected on a filter. These parameters are: dilution air quality, dilution conditions (dilution ratio and dilution air temperature), particle size classification, filter media and artifacts, and face velocity. Each factor has the potential to change the mass collected by a minimum of 5% of the standard, suggesting there is room for improvement.
Journal Article

Measuring Diesel Ash Emissions and Estimating Lube Oil Consumption Using a High Temperature Oxidation Method

2009-06-15
2009-01-1843
Diesel engine ash emissions are composed of the non-combustible portions of diesel particulate matter derived mainly from lube oil, and over time can degrade diesel particulate filter performance. This paper presents results from a high temperature oxidation method (HTOM) used to estimate ash emissions, and engine oil consumption in real-time. Atomized lubrication oil and diesel engine exhaust were used to evaluate the HTOM performance. Atomized fresh and used lube oil experiments showed that the HTOM reached stable particle size distributions and concentrations at temperatures above 700°C. The HTOM produced very similar number and volume weighted particle size distributions for both types of lube oils. The particle number size distribution was unimodal, with a geometric mean diameter of about 23 nm. The volume size distribution had a geometric volume mean diameter of about 65 nm.
Journal Article

Fast and Efficient Detection of Shading of the Objects

2015-04-14
2015-01-0371
The human thermal comfort, which has been a subject of extensive research, is a principal objective of the automotive climate control system. Applying the results of research studies to the practical problems require quantitative information of the thermal environment in the passenger compartment of a vehicle. The exposure to solar radiation is known to alter the thermal environment in the passenger compartment. A photovoltaic-cell based sensor is commonly used in the automotive climate control system to measure the solar radiation exposure of the passenger compartment of a vehicle. The erroneous information from a sensor however can cause thermal discomfort to the occupants. The erroneous measurement can be due to physical or environmental parameters. Shading of a solar sensor due to the opaque vehicle body elements is one such environmental parameter that is known to give incorrect measurement.
Journal Article

Investigation of Fuel Effects on In-Cylinder Reforming Chemistry Using Gas Chromatography

2016-04-05
2016-01-0753
Negative Valve Overlap (NVO) is a potential control strategy for enabling Low-Temperature Gasoline Combustion (LTGC) at low loads. While the thermal effects of NVO fueling on main combustion are well-understood, the chemical effects of NVO in-cylinder fuel reforming have not been extensively studied. The objective of this work is to examine the effects of fuel molecular structure on NVO fuel reforming using gas sampling and detailed speciation by gas chromatography. Engine gas samples were collected from a single-cylinder research engine at the end of the NVO period using a custom dump-valve apparatus. Six fuel components were studied at two injection timings: (1) iso-octane, (2) n-heptane, (3) ethanol, (4) 1-hexene, (5) cyclohexane, and (6) toluene. All fuel components were studied neat except for toluene - toluene was blended with 18.9% nheptane by liquid volume to increase the fuel reactivity.
Journal Article

Evaluation of Cu-Based SCR/DPF Technology for Diesel Exhaust Emission Control

2008-04-14
2008-01-0072
Recently, a new technology, termed 2-way SCR/DPF by the authors, has been developed by several catalyst suppliers for diesel exhaust emission control. Unlike a conventional emission control system consisting of an SCR catalyst followed by a catalyzed DPF, a wall-flow filter is coated with SCR catalysts for controlling both NOx and PM emissions in a single catalytic converter, thus reducing the overall system volume and cost. In this work, the potential and limitations of the Cu/Zeolite-based SCR/DPF technology for meeting future emission standards were evaluated on a pick-up truck equipped with a prototype light-duty diesel engine.
Journal Article

Late Intake Valve Closing as an Emissions Control Strategy at Tier 2 Bin 5 Engine-Out NOx Level

2008-04-14
2008-01-0637
A fully flexible valve actuation (FFVA) system was developed for a single cylinder research engine to investigate high efficiency clean combustion (HECC) in a diesel engine. The main objectives of the study were to examine the emissions, performance, and combustion characteristics of the engine using late intake valve closing (LIVC) to determine the benefits and limitations of this strategy to meet Tier 2 Bin 5 NOx requirements without after-treatment. The most significant benefit of LIVC is a reduction in particulates due to the longer ignition delay time and a subsequent reduction in local fuel rich combustion zones. More than a 95% reduction in particulates was observed at some operating conditions. Combustion noise was also reduced at low and medium loads due to slower heat release. Although it is difficult to assess the fuel economy benefits of LIVC using a single cylinder engine, LIVC shows the potential to improve the fuel economy through several approaches.
Journal Article

Emissions Effects of Hydrogen as a Supplemental Fuel with Diesel and Biodiesel

2008-04-14
2008-01-0648
A 1.9 liter Volkswagen TDI engine has been modified to accomodate the addition of hydrogen into the intake manifold via timed port fuel injection. Engine out particulate matter and the emissions of oxides of nitrogen were investigated. Two fuels,low sulfur diesel fuel (BP50) and soy methyl ester (SME) biodiesel (B99), were tested with supplemental hydrogen fueling. Three test conditions were selected to represent a range of engine operating modes. The tests were executed at 20, 40, and 60 % rated load with a constant engine speed o 1700 RPM. At each test condition the percentage of power from hydrogen energy was varied from 0 to 40 %. This corresponds to hydrogen flow rates ranging from 7 to 85 liters per minute. Particulate matter (PM) emissions were measured using a scaning mobility particle sizer (SMPS) and a two stage micro dilution system. Oxides of nitrogen were also monitored.
Journal Article

Gasoline Fuel Injector Spray Measurement and Characterization - A New SAE J2715 Recommended Practice

2008-04-14
2008-01-1068
With increasingly stringent emissions regulations and concurrent requirements for enhanced engine thermal efficiency, a comprehensive characterization of the automotive gasoline fuel spray has become essential. The acquisition of accurate and repeatable spray data is even more critical when a combustion strategy such as gasoline direct injection is to be utilized. Without industry-wide standardization of testing procedures, large variablilities have been experienced in attempts to verify the claimed spray performance values for the Sauter mean diameter, Dv90, tip penetration and cone angle of many types of fuel sprays. A new SAE Recommended Practice document, J2715, has been developed by the SAE Gasoline Fuel Injection Standards Committee (GFISC) and is now available for the measurement and characterization of the fuel sprays from both gasoline direct injection and port fuel injection injectors.
Journal Article

The Electrification of the Automobile: From Conventional Hybrid, to Plug-in Hybrids, to Extended-Range Electric Vehicles

2008-04-14
2008-01-0458
A key element of General Motors' Advanced Propulsion Technology Strategy is the electrification of the automobile. The objectives of this strategy are reduced fuel consumption, reduced emissions and increased energy security/diversification. The introduction of hybrid vehicles was one of the first steps as a result of this strategy. To determine future opportunities and direction, an extensive study was completed to better understand the ability of Plug-in Hybrid Electric Vehicles (PHEV) and Extended-Range Electric Vehicles (E-REV) to address societal challenges. The study evaluated real world representative driving datasets to understand actual vehicle usage. Vehicle simulations were conducted to evaluate the merits of PHEV and E-REV configurations. As derivatives of conventional full hybrids, PHEVs have the potential to deliver a significant reduction in petroleum usage.
Journal Article

A Bayesian Approach to Cross-Validation in Pedestrian Accident Reconstruction

2011-04-12
2011-01-0290
In statistical modeling, cross-validation refers to the practice of fitting a model with part of the available data, and then using predictions of the unused data to test and improve the fitted model. In accident reconstruction, cross-validation is possible when two different measurements can be used to estimate the same accident feature, such as when measured skidmark length and pedestrian throw distance each provide an estimate of impact speed. In this case a Bayesian cross-validation can be carried out by (1) using one measurement and Bayes theorem to compute a posterior distribution for the impact speed, (2) using this posterior distribution to compute a predictive distribution for the second measurement, and then (3) comparing the actual second measurement to this predictive distribution. An actual measurement falling in an extreme tail of the predictive distribution suggests a weakness in the assumptions governing the reconstruction.
Technical Paper

Data-Driven Framework for Fuel Efficiency Improvement in Extended Range Electric Vehicle Used in Package Delivery Applications

2020-04-14
2020-01-0589
Extended range electric vehicles (EREVs) are a potential solution for fossil fuel usage mitigation and on-road emissions reduction. The use of EREVs can be shown to yield significant fuel economy improvements when proper energy management strategies (EMSs) are employed. However, many in-use EREVs achieve only moderate fuel reduction compared to conventional vehicles due to the fact that their EMS is far from optimal. This paper focuses on in-use rule-based EMSs to improve the fuel efficiency of EREV last-mile delivery vehicles equipped with two-way Vehicle-to-Could (V2C) connectivity. The method uses previous vehicle data collected on actual delivery routes and machine learning methods to improve the fuel economy of future routes. The paper first introduces the main challenges of the project, such as inherent uncertainty in human driver behavior and in the roadway environment. Then, the framework of our practical physics-model guided data-driven approach is introduced.
Journal Article

GREEN-MAC-LCCP®: A Tool for Assessing Life Cycle Greenhouse Emissions of Alternative Refrigerants

2008-04-14
2008-01-0828
The GREEN-MAC-LCCP© [Global Refrigerants Energy & Environmental - Mobile Air Condition - Life Cycle Climate Performance] model described here is an evolution of a previous GM model that assesses the lifecycle energy and GHG emissions associated with the production, use and disposal of alternative refrigerants and MAC components. This new model reduces the complexity of inputs and provides a consistent output analysis. This model includes Microsoft Excel Visual Basic© code to automatically make the calculations once inputs are complete.
Journal Article

Hot Surface Ignition of Gasoline-Ethanol Fuel Mixtures

2009-04-20
2009-01-0016
The purpose of this paper is to present the results of hot surface ignition (HSI) testing and American Society for Testing and Materials (ASTM) auto-ignition testing (AIT) performed on gasoline fuel mixtures containing varying levels of ethanol. With the increased consumer interest in ethanol-based fuels as a measure of reducing the United States dependence on foreign oil, the use of E85 and other ethanol/petroleum fuel blends is on the increase. While some autoignition data for summer and winter blends of gasoline on hot surfaces exist beyond the standard ASTM E659-78 test procedure [1], there is little data on ethanol-based fuels and their HSI characteristics.
Journal Article

Design and Development of a Switching Roller Finger Follower for Discrete Variable Valve Lift in Gasoline Engine Applications

2012-09-10
2012-01-1639
Global environmental and economic concerns regarding increasing fuel consumption and greenhouse gas emission are driving changes to legislative regulations and consumer demand. As regulations become more stringent, advanced engine technologies must be developed and implemented to realize desired benefits. Discrete variable valve lift technology is a targeted means to achieve improved fuel economy in gasoline engines. By limiting intake air flow with an engine valve, as opposed to standard throttling, road-load pumping losses are reduced resulting in improved fuel economy. This paper focuses on the design and development of a switching roller finger follower system which enables two mode discrete variable valve lift on end pivot roller finger follower valvetrains. The system configuration presented includes a four-cylinder passenger car engine with an electro-hydraulic oil control valve, dual feed hydraulic lash adjuster, and switching roller finger follower.
Journal Article

An Aerosolization Method for Characterizing Particle Contaminants in Diesel Fuel

2013-10-14
2013-01-2668
Diesel fuel injection systems are operating at increasingly higher pressure (up to 250 MPa) with smaller clearances, making them more sensitive to diesel fuel contaminants. Most liquid particle counters have difficulty detecting particles <4 μm in diameter and are unable to distinguish between solid and semi-solid materials. The low conductivity of diesel fuel limits the use of the Coulter counter. This raises the need for a new method to characterize small (<4 μm) fuel contaminants. We propose and evaluate an aerosolization method for characterizing solid particulate matter in diesel fuel that can detect particles as small as 0.5 μm. The particle sizing and concentration performance of the method were calibrated and validated by the use of seed particles added to filtered diesel fuel. A size dependent correction method was developed to account for the preferential atomization and subsequent aerosol conditioning processes to obtain the liquid-borne particle concentration.
Journal Article

Development of the Combustion System for General Motors' 3.6L DOHC 4V V6 Engine with Direct Injection

2008-04-14
2008-01-0132
General Motors' 3.6L DOHC 4V V6 engine has been upgraded to provide substantial improvements in performance, fuel economy, and emissions for the 2008 model year Cadillac CTS and STS. The fundamental change was a switch from traditional manifold-port fuel injection (MPFI) to spark ignition direct injection (SIDI). Additional modifications include enhanced cylinder head and intake manifold air flow capacities, optimized camshaft profiles, and increased compression ratio. The SIDI fuel system presented the greatest opportunities for system development and optimization in order to maximize improvements in performance, fuel economy, and emissions. In particular, the injector flow rate, orifice geometry, and spray pattern were selected to provide the optimum balance of high power and torque, low fuel consumption, stable combustion, low smoke emissions, and robust tolerance to injector plugging.
Technical Paper

Gear Mesh Excitation Models for Assessing Gear Rattle and Gear Whine of Torque Transmission Systems with Planetary Gear Sets

2007-05-15
2007-01-2245
This paper presents four methodologies for modeling gear mesh excitations in simple and compound planetary gear sets. The gear mesh excitations use simplified representations of the gear mesh contact phenomenon so that they can be implemented in a numerically efficient manner. This allows the gear mesh excitations to be included in transmission system-level, multibody dynamic models for the assessment of operating noise and vibration levels. After presenting the four approaches, a description is made regarding how they have been implemented in software. Finally, example models are used to do a comparison between the methods
Technical Paper

Vehicle Dash Mat SEA Modeling and Correlation

2007-05-15
2007-01-2310
The dash mat is one of the most important acoustic components in the vehicle for both powertrain noise and road noise attenuation. To optimize acoustic performance and mass requirements in the advanced development stage, analytical modeling is essential. The development of a detailed Statistical Energy Analysis (SEA) model of a dash mat is discussed in this paper. Modeling techniques and correlation with test are presented for two different production dash mat designs, a barrier-decoupler conventional system and a dual layer dissipative system without a mass barrier. The material properties and thickness distribution are used in the SEA model together with the geometry information of the dash panel. With the SEA model suitably correlated, trade-off studies are conducted to investigate the relationship between mass reduction of the barrier and change in decoupler thickness. The effects of air gaps are also considered in both modeling and testing.
Technical Paper

Computational Aeroacoustics Investigation of Automobile Sunroof Buffeting

2007-05-15
2007-01-2403
A numerical investigation of automobile sunroof buffeting on a prototype sport utility vehicle (SUV) is presented, including experimental validation. Buffeting is an unpleasant low frequency booming caused by flow-excited Helmholtz resonance of the interior cabin. Accurate prediction of this phenomenon requires accounting for the bi-directional coupling between the transient shear layer aerodynamics (vortex shedding) and the acoustic response of the cabin. Numerical simulations were performed using the PowerFLOW code, a CFD/CAA software package from Exa Corporation based on the Lattice Boltzmann Method (LBM). The well established LBM approach provides the time-dependent solution to the compressible Navier-Stokes equations, and directly captures both turbulent and acoustic pressure fluctuations over a wide range of scales given adequate computational grid resolution.
X