Refine Your Search

Search Results

Viewing 1 to 8 of 8
Technical Paper

Theoretical and Experimental Flow Analysis of Exhaust Manifolds for PZEV

2007-08-05
2007-01-3444
As the current and future emission regulations become stringent, the research on exhaust manifold with CCC (Close Coupled Catalyst) has been the interesting and remarkable subject. To design of exhaust manifold with CCC is a difficult task due to the complexity of the flow distribution caused by the pulsating flows that are emitted at the exhaust ports. This study is concerned with the theoretical and experimental approach to improve catalyst flow uniformity through the basic understanding of exhaust flow characteristics. Computational and experimental approach to the flow for exhaust manifold of conventional cast type, stainless steel bending type with 900 cell CCC system in a 4-cylinder gasoline engine was performed to investigate the flow distribution of exhaust gases.
Technical Paper

Experimental Investigation on Flow Rate Performance and LPLi Engine Application of Turbine Pump with Various Composition Ratio of LPG Fuel

2007-08-05
2007-01-3629
This study has mainly focused on the development of turbine type LPLi pump. The flow rate of turbine pump was examined with various fuel blends of LPG. The experimental results of flow rate and fuel injection quantity of turbine type fuel pump have equivalent or better performance using summer season LPG fuel compared to BLDC one. However, the flow rate of turbine type pump decreased as the proportion of propane content in LPG fuel increased. The cause of flow drop was thought as the cavitations phenomena at high speed impeller component. Finally, the noisy characteristics and durability performance of turbine pump were tested. The hot start delay of LPLi engine was assessed with various composition ratio of LPG. The engine starting and pressure settling time of turbine pump showed equivalent performance to those of BLDC one.
Technical Paper

Effects of Gas Composition on the Performance and Hydrocarbon Emissions for CNG Engines

1998-08-11
981918
Natural gas is considered to be an alternative fuel for passenger cars, truck transportation and stationary engines that can provide both good environmental effect and energy security. However, as the composition of fuel natural gas varies with the location, climate and other factors, such changes in fuel properties affect emission characteristics and performance of CNG (Compressed Natural Gas) engines. The purpose of the present study is to investigate effects of difference in gas composition on engine performance and hydrocarbon emission characteristics. The results show that THC decreases with an increasing WI (Wobber Index) and MCP (Maximum Combustion Potential) of natural gas. The power is shown to be proportional to the total heat value of the actual amount of gas entering the cylinder. There is 20% power variation depending on the composition of gas when the A/F ratio and spark timing are adjusted and fixed for a specific gas.
Technical Paper

The OBD-II System in the Hyundai Accent

1998-10-19
982551
This paper presents a system concept of the On-Board Diagnostics system (OBD-II) in the Hyundai Accent. New-α and α-DOHC engine developed by Hyundai are installed in the Accent. The ECU (Engine Control Unit) developed by BOSCH is adopted for this vehicle. To comply with the OBD-II regulation mandated by CARB (California Air Resources Board), some monitoring algorithms originally developed by BOSCH were introduced and modified for the Hyundai Accent. Using modified algorithms, many kinds of test were carried out during more than four years. Through the demonstration test and various field tests, it was confirmed that the OBD-II system fulfilled the regulation and had good performance.
Technical Paper

The Effect Of Intake System Geometry On The Sensitivity Of Hot Film Type Air Flow Meter

2003-05-19
2003-01-1802
The air fuel ratio of current gasoline engine is mostly controlled by various air flow meters. When CVVT (Continuous Variable Valve Timing) device is applied to gasoline engine for higher engine performance, MAP (Manifold Absolute Pressure) sensor can not be applied anymore due to intake valve motion. Therefore HFM (Hot film airflow meter) is used for measuring the intake air flow instead of MAP sensor. Usually HFM has a little sensitivity in flow direction, therefore reverse flow from engine to air cleaner can not be measured. Also, HFM maker request enough straight duct length nearly 10 times of a duct diameter making a fully developed flow. But, most vehicles have no enough space to install such an intake system in engine room. Thus the inserted duct was applied to confirm the stable fully developed flow in air duct. The various duct configurations in front of HFM effect on the sensitivity of HFM.
Technical Paper

Fuel Effect on Particle Emissions of a Direct Injection Engine

2013-04-08
2013-01-1559
PN emissions were measured using a 2012 1.6L gasoline direct injection (GDI) engine vehicle. The measurements were performed over NEDC using domestic fuel from South Korea and Euro 5 certification fuel, also FTP-75 cycle using domestic fuel and Indolene (official emission test fuel in the US). Domestic fuel is the most volatile and has the least aromatics, Euro 5 certification fuel is the least volatile and has the most aromatics. Lower volatile gasoline generates more particle emissions due to diffusion combustion of fuel attached on the piston and fuel residues which are burned in its liquid form. Gasoline with more aromatic contents generates more particle emissions, too. Because aromatics have higher boiling point, lower vapor pressure and ring structures. Fuel specification difference resulted in PN emission difference. In NEDC tests, result using Euro 5 certification fuel was 77.0% higher than the result using domestic fuel.
Technical Paper

Strategies for Particle Emissions Reduction from GDI Engines

2013-04-08
2013-01-1556
In this study, present level of 2.0L GDI vehicle is measured and it is figured out how to reduce particle emissions against European emission limit(EURO 6) and US emissions standards(LEV 3) through engine test and vehicle test. A cause of PM and PN formation is divided into several reasons. This paper describes the optimization of engine control parameter and hardware change like injector type and injection target position like spray pattern optimization with minimizing side effect. If particle emission limit is getting more strengthen GPF(Gasoline Particle Filter) is a simple solution to meet particle emission limit. But engine performance decreases according to exhaust pressure increase and there is cost problem. This paper have shown that 60% level of euro6c PN limit is accomplished without a GPF at demonstrated vehicle.
Technical Paper

A Numerical Investigation of Mixing Characteristics of a Direct-Injection (DI) Engine with Liquefied Petroleum Gas

2013-03-25
2013-01-0136
Mixing characteristics of a Direct-Injection engine with liquefied petroleum gas were numerically investigated using a 3D unsteady Eularian-Lagrangian two-phase model. Numerical results were validated to the experimental data of heat release rate, pressure and mass flow rate of air. The numerical results and experimental data were in a good agreement. Simulations were conducted with various engine operation conditions to investigate the effects of supercharging on the mixing characteristics of the DI engine with LPG. The results showed that the fuel uniformities and evaporation rates of LPG are higher than them of gasoline. Fuel consumption rates and maximum cylinder temperatures of LPG were also higher than them of gasoline.
X