Refine Your Search

Topic

Search Results

Journal Article

Analyzing Field Failures of Engine Valve Springs in Presence of Non Metallic Inclusions by Applying Statistical and Fracture Mechanics Models

2009-04-20
2009-01-0528
The reliability of engine valve springs is a very important issue from the point of view of warranty. This paper presents a combined experimental and statistical analysis for predicting the fatigue limit of high tensile engine valve spring material in the presence of non-metallic inclusions. Experimentally, Fatigue tests will be performed on valve springs of high strength material at different stress amplitudes. A model developed by Murakami and Endo, which is based on the fracture mechanics approach, Extreme value statistics (GUMBEL Distribution) and Weibull Distribution will be utilized for predicting the fatigue limit and the maximum inclusion size from field failures. The two approaches, experimental and theoretical, will assist in developing the S-N curve for high tensile valve spring material in the presence of non-metallic inclusions.
Technical Paper

Effect of Temperature on Weld Strength in Chrome Moly Space Frames

2006-12-05
2006-01-3648
Chromium Molybdenum Steel (AISI 4130), commonly referred to as “Chrome Moly”, is one of the most popular materials used in the construction of tubular space frames and chassis components for racing applications. Its high strength, light weight and comparably low material cost make the reasons for its popularity quite obvious. However, there is one problem that is commonly overlooked: maintaining the strength component of Chrome Moly in areas exposed to high levels of heat followed by rapid cooling during welding. This paper seeks to better understand the affects of cooling due to welding on the strength of Chrome Moly tubing.
Technical Paper

Redesign of a Differential Housing for a Formula Car (FSAE)

1998-11-16
983077
A unique differential assembly was needed for the Lawrence Technological University (LTU) SAE Formula race car. Specifically, a differential was required that had torque sensing capabilities, perfect reliability, high strength, light weight, the ability to withstand inertia and shock loading, a small package, no leaks, the ability to support numerous components. In that regard, an existing differential was selected that had the torque sensing capabilities, but had deficiencies that needed to be fixed. Those deficiencies included the following: Differential unit was over 4 kg unmounted, with no housing. This was considered too heavy, when housed properly. Bearing surface was provided on only one end of the carrier. This design provides insufficient bearing surface to support either the differential housing or half-shafts The internal drive splines integral to the case are not optimized for a perpendicular drive/axle arrangement, such as, a chain drive.
Technical Paper

Innovative Graduate Program in Mechatronics Engineering to Meet the Needs of the Automotive Industry

2010-10-19
2010-01-2304
A new inter-disciplinary degree program has been developed at Lawrence Technological University: the Master of Science in Mechatronic Systems Engineering Degree (MS/MSE). It is one of a few MS-programs in mechatronics in the U.S.A. today. This inter-disciplinary program reflects the main areas of ground vehicle mechatronic systems and robotics. This paper presents areas of scientific and technological principles which the Mechanical Engineering, Electrical and Computer Engineering, and Math and Computer Science Departments bring to Mechatronic Systems Engineering and the new degree program. New foundations that make the basis for the program are discussed. One of the biggest challenges was developing foundations for mechanical engineering in mechatronic systems design and teaching them to engineers who have different professional backgrounds. The authors first developed new approaches and principles to designing mechanical subsystems as components of mechatronic systems.
Technical Paper

All-Wheel Drive Vehicle Energy Efficiency Evaluation

2004-03-08
2004-01-0864
All-wheel drive (AWD) vehicle performance considerably depends not only on total power amount needed for the vehicle motion in the given road/off-road conditions but also on the total power distribution among the drive wheels. In turn, this distribution is largely determined by the driveline system and its mechanisms installed in power dividing units. They are interwheel, interaxle reduction gears, and transfer cases. The paper presents analytical methods to evaluate the energy and, accordingly, fuel efficiency of vehicles with any arbitrary number of the drive wheels. The methods are based on vehicle power balance equations analysis and give formulas that functionally link the wheel circumferential forces with slip coefficients and other forces acting onto an AWD vehicle. The proposed methods take into consideration operational modes of vehicles that are tractive mode, load transportation, or a combination of both.
Technical Paper

An Adjustable Aluminum Differential

2001-03-05
2001-01-0883
The 2000 Formula SAE Team at Lawrence Technological University (LTU) has designed a chain driven, three-piece aluminum differential unique from past years. This innovative design introduces an adjustable chain mount replacing conventional shackles. Made completely of aluminum, this device moves the entire rear drive train. The gear set remains to be limited slip with a student designed housing. The idea of an aluminum housing with manufactured gear set is a continued project at LTU. After cutting approximately 33% from the weight of the 1999 differential, the 2000 is geared toward a simpler, and smaller design, easier assembly and lighter weight. After reading this brief overview, the idea of this paper is to provide an understanding of the reasoning behind the choices made on the LTU driveline team. FIGURE 1
Technical Paper

Evolution of Intake Design for a Small Engine Formula Vehicle

2001-03-05
2001-01-1211
To obtain a maximum range for usable torque, Helmholtz theory is utilized to tune an Honda CBR 600 cc engine. The design objectives were to: 1) Increase performance by reducing pressure losses in the entire intake system; 2) Maximize the restrictor's design to increase airflow at lower pressure drops; 3) Improve throttle response through throttle body design and reduction of turbulence when full open; 4) Utilize runner design to improve tuning effects as predicted by Helmholtz resonance theory and; 5) Incorporate a plenum design with equal air distribution to all four cylinders.
Technical Paper

Aerodynamic Evaluation on Formula SAE Vehicles

2001-03-05
2001-01-1270
Aerodynamics plays an important role in the dynamic behavior of a vehicle. The purpose of this paper is to evaluate external and internal aerodynamics of the 1999 and 2000 Lawrence Technological University Formula SAE vehicles. The external aerodynamic study will be limited to form and interference drag and the evaluation of lift. The internal aerodynamics study will be limited to ram air to the intake, heat exchanger, and oil cooler.
Technical Paper

The Impact of Aerodynamics on Vehicle Performance in a Formula SAE Racing Style Vehicle

2001-11-12
2001-01-2744
Aerodynamic drag is the force that restricts the forward velocity of a vehicle. Sources of drag are form drag, interference drag, internal flow drag, surface friction, and induced drag. Aerodynamic drag directly impacts the fuel economy attainable by a vehicle. In the Formula SAE competition (FSAE), fuel economy is a factor during the endurance phase. This paper will focus on the effects of aerodynamic drag and how it impacts the fuel economy of a FSAE racing style vehicle. Using the Lawrence Technological University (LTU) 1999 and 2000 cars to study and evaluate various methods to reduce drag and optimize fuel economy. Theoretical and experimental methods will be used and the study will be limited to the effects of form and interference drag.
Technical Paper

Design of Formula SAE Suspension Components

2002-12-02
2002-01-3308
This paper is an introduction to the design of suspension components for a Formula SAE car. Formula SAE is a student competition where college students conceive, design, fabricate, and compete with a small formula-style open wheel racing car. The suspension components covered in this paper include control arms, uprights, spindles, hubs, pullrods, and rockers. Key parameters in the design of these suspension components are safety, durability and weight. The 2001 Lawrence Technological University Formula SAE car will be used as an example throughout this paper.
Technical Paper

Optimizing the Rear Fascia Cutline Based On Investigating Deviation Sources of the Body Panel Fit and Finish

2017-03-28
2017-01-1600
A vehicle’s exterior fit and finish, in general, is the first system to attract customers. Automotive exterior engineers were motivated in the past few years to increase their focus on how to optimize the vehicle’s exterior panels split lines quality and how to minimize variation in fit and finish addressing customer and market required quality standards. The design engineering’s focus is to control the deviation from nominal build objective and minimize it. The fitting process follows an optimization model with the exterior panel’s location and orientation factors as independent variables. This research focuses on addressing the source of variation “contributed factors” that will impact the quality of the fit and finish. These critical factors could be resulted from the design process, product process, or an assembly process. An empirical analysis will be used to minimize the fit and finish deviation.
Technical Paper

Industrial Base Sustainment through Risk Modeling with Model-Based Systems Engineering Applications

2017-03-28
2017-01-1602
There is evidence to suggest that before military equipment ever experiences sustainment delays the equipment carries state patterns within its logistics and supply chain data history that could be leveraged for risk mitigation. Analysis of these patterns can also identify new research & development (R&D) and technology transition candidates that relate the seemingly disparate activities of R&D project management and Diminishing Manufacturing Sources and Material Shortages (DMSMS) management. Relating eligible R&D activities to the DMSMS risk identification phase helps stage potential sustainment risk mitigations ahead of time on the one hand, while creating additional demand and resources to mature prototypes on the other hand.
Technical Paper

Tire Longitudinal Elasticity and Effective Rolling Radii: Experimental Method and Data

2005-04-11
2005-01-1823
To evaluate traction and velocity performance and other operational properties of a vehicle requires data on some tire parameters including the effective rolling radius in the driven mode (no torque on a wheel), the effective radii in the drive mode (torque applied to the wheel), and also the tire longitudinal elasticity. When one evaluates vehicle performance, these parameters are extremely important for linking kinematic parameters (linear velocity and tire slip coefficient) with dynamic parameters (torque and traction net force) of a tired wheel. This paper presents an experimental method to determine the above tire parameters in laboratory facilities. The facilities include Lawrence Technological University's 4x4 vehicle dynamometer with individual control of each of the four wheels, Kistler RoaDyn® wheel force sensors that can measure three forces and three moments on a wheel, and a modern data acquisition system. The experimental data are also presented in the paper.
Technical Paper

Optimization of Modified Car Body Using Mesh Morphing Techniques in CFD

2016-04-05
2016-01-0009
Today's strict fuel economy requirement produces the need for the cars to have really optimized shapes among other characteristics as optimized cooling packages, reduced weight, to name a few. With the advances in automotive technology, tight global oil resources, lightweight automotive design process becomes a problem deserving important consideration. It is not however always clear how to modify the shape of the exterior of a car in order to minimize its aerodynamic resistance. Air motion is complex and operates differently at different weather conditions. Air motion around a vehicle has been studied quite exhaustively, but due to immense complex nature of air flow, which differs with different velocity, the nature of air, direction of flow et cetera, there is no complete study of aerodynamic analysis for a car. Something always can be done to further optimize the air flow around a car body.
Technical Paper

Development of a Baja SAE Data Acquisition System

2023-04-11
2023-01-0736
A vehicle-level data acquisition (DAQ) system was developed and implemented on the Lawrence Technological University (LTU) Baja SAE vehicle. This low-cost Arduino-based DAQ system is capable of accurately and repeatedly measuring Baja SAE specific vehicle parameters and storing them for offline analysis. While expandable for the needs of future teams, the developed DAQ system includes measurement of vehicle wheel speed, CVT pulley speeds, suspension position, CVT belt temperature, steering load, and steering angle. The development of the DAQ system architecture and the development of the angular speed and suspension position measurement subsystems are the focus of this work. The processes followed and lessons learned can be used by other Baja SAE and SAE Collegiate Design Series. Each measurement subsystem was designed, fabricated, integrated, and validated on the bench and in-vehicle.
Technical Paper

Design of an Aluminum Differential for a Racing Style Car

2000-03-06
2000-01-1156
The 1999 Lawrence Technological University (LTU) drive train consists of a sprocket and chain assembly that delivers the torque, developed by a 600cc Honda F3 engine, to the rear wheels. The torque is transferred through a limited-slip, torque sensing differential unit comprised of a gear set in a student designed housing. The 1999 differential is a second-generation aluminum housing. The idea of using aluminum was first attempted with the 1998 team who successfully completed and used aluminum despite much complexity and a few design flaws. Therefore, in the LTU Formula Team's continuing effort to optimize the design, a new less complex design was conceived to house the gear set. This innovative design reduces the number of housing components from three in 1998, to two in 1999.
Technical Paper

An Innovative Bicycle Roof Rack Using Sliding Rail Technology

2000-08-21
2000-01-3089
The modification of the Talon Roof Carrier, by E-Z Load Technologies, into a bicycle carrier, simplifies the loading and unloading of bicycles onto the rack. A modification of the slide rail system decreases weight and bulkiness, allowing easier installation. A redesign of the attachment method of the rack to the roof improves compatibility with the manufacturer-installed roof rack. Mounting the bicycle to the rack is less challenging with the addition of a bicycle carrier platform. The ease of raising and lowering the rack is increased with a more reliable and user friendly locking mechanism. Added paralleling plates eliminate binding, ensuring smooth motion.
Technical Paper

Numerical Design of a Low Mass Differential Housing

1999-03-01
1999-01-0741
Lawrence Technological University's 1998 SAE Formula car needed a high performance differential assembly. The performance requirements of a competitive SAE Formula car differential are as follows: Torque sensing capabilities Perfect reliability High strength Low mass Ability to withstand inertia and shock loading Small package Leak proof housing Ability to support numerous components With these requirements in mind an existing differential was selected with the capability for torque sensing. This differential lacked the desired low mass, support, internal drive splines, and proper gearing protection. The differential was re-engineered to remedy the deficiencies. The internal gearing from the selected differential was used in an improved casing. This casing and it's position in the car, reduce the number of side-specific parts required as well as improving the performance. The new design significantly reduces the size and mass of the assembly.
Technical Paper

An Application of Digital Image Correlation (DIC) Method in Large-Scale I-Beams Bending Test

2018-04-03
2018-01-1218
AASHTO I-Beam is a standard structural concrete part for bridge sections. The flexural performance of an AASHTO I-Beam is critical for bridge design. This paper presents an application of Digital Image Correlation (DIC) Method in full-scale AASHTO I-Beam flexural performance study. A full-scale AASHTO I-Beam pre-stressed with steel strands is tested by three-point bending method. The full-scale AASHTO I-Beam is first loaded from 0 kips to 100 kips and is then released from 100 kips to 0 kips. A dual-camera 3D Digital Image Correlation (DIC) system is used to measure the deflection and strain distribution during the testing. From the DIC results, the micro-crack generation progress during the loading progress can be observed clearly from the measured DIC strain map. To enable such a large-scale DIC measurement, the used DIC setup is optimized in terms of the optical imaging system and speckle pattern size.
Technical Paper

Assessment of a Three-Semester Mechanical Engineering Capstone Design Sequence Based on the SAE Collegiate Design Series

2019-04-02
2019-01-1126
Mechanical engineering students at Lawrence Technological University complete a five-credit hour capstone project: either an SAE collegiate design series (CDS) vehicle or an industry-sponsored project (ISP). Students who select the SAE CDS option enroll in a three-semester, three-course sequence. Each team of seniors designs, builds, and competes with their vehicle at one of the SAE CDS events. Three years after implementing major changes to the course structure and content, the three-semester capstone design sequence is revisited. Finalized learning objectives are presented and the sequence is assessed with a mix of direct, indirect, and anecdotal assessment. Student performance, as measured directly with design reports, milestones, and project completion, is good. Of the five Lawrence Tech CDS teams, only one has failed to be ready for competition since the changes were implemented.
X