Refine Your Search

Topic

Author

Search Results

Technical Paper

Engine out Particulate Emission Optimization with Multiple Injection Strategy for 3-Cylinder Turbo GDI E6d Engine

2021-09-22
2021-26-0070
With the increase in the number of automobiles on road, there is a very strong emphasis on reducing the air pollution which led to evolution of stringent emission norms. To meet these stringent emission norms, the ideal solution is to optimize the engine hardware and the combustion system to reduce the emission at source thereby reducing the dependency on exhaust after treatment system. Gasoline Direct Injection (GDI) engines are gaining popularity worldwide as they provide a balance between fun to drive and fuel efficiency. Controlling the particle emissions especially Particle Number (PN) is a challenge in GDI engines due to the nature of its combustion system. In this study, experiments were performed on a 1.2Litre 3-cylinder 250bar GDI engine to capture the effect of injection strategies on PN.
Technical Paper

Development of an all Speed Governed Diesel-CNG Dual Fuel Engine for Farm Applications

2021-09-22
2021-26-0101
This paper discusses the development of an all speed governed diesel-natural gas dual fuel engine for agricultural farm tractor. A 45 hp, 2.9 liters diesel-natural gas dual fuel engine with a novel closed loop secondary fuel injection system was developed. A frugal approach without any modification of the base mechanical diesel fuel injection system was followed. This approach helped to minimize the cost impact, while meeting performance and emissions at par with neat diesel operation. Additional cost on gas injection system is redeemed by cost savings on diesel fuel. The dual fuel technology developed by Mahindra & Mahindra Ltd., substitutes on an average approximately 40% of diesel with compressed natural gas, meeting the TREM III A emission norms for dual fuel while meeting all application requirements. The governing performance of the tractor was found to be superior than base diesel tractor.
Technical Paper

Development of Sensor Based Rotavator Unit For Display of Operational Parameters on Various Soil Conditions

2021-09-22
2021-26-0091
Rotavator is an active tillage implement for breaking the Soil and for the preparation of seed bed for cultivation. The Farmers are currently facing problem due to usage of sub optimal speed of Rotavator which results in more fuel consumption, takes more time for completion of operation. Also, the Current Rental models work on Tractor + Implement as rental combination and customer not able to rent Rotavator as a standalone implement due to non-availability of Tracking information such as hours of utilization on Rotavator. Farmers not able to maintain the service periodicity, if oil change not done in prescribed duration then it may result in improper maintenance and breakdown of the Rotavator. To overcome these problems a smart Rotavator developed consists of an electronic unit fitted on the Rotavator shaft to measure the speed of the shaft rotation and in turn convert to Rotavator speed and also able to convert into Hours of usage based on the starting and stopping of the rotavator.
Technical Paper

Improvement in the Brake Pedal Feel Comfort for Light Commercial Vehicles with Hydraulic Brake System

2021-09-22
2021-26-0515
Being a safety critical aggregate, every aspect of brake system is considered significant in vehicles operations. Along with optimum performance of brake system in terms of deceleration generation, brake pedal feel or brake feel is considered as one of the key elements while evaluating brake system of vehicles. There are many factors such as liner and drum condition, road surface, friction between linkages which impress the pedal feel. Out of these, in this paper we will be discussing the factors which influence the brake pedal feel in relation to the driver comfort and confidence building. Under optimum braking condition, brake operation must be completed with pedal effort not very less or not very high, brake pedal feel must be firm throughout the operation, in such a way that it will not create fatigue and at the same time it will give enough confidence to the driver while operating with acceptable travel.
Technical Paper

Gear Shift Pattern Optimization for Best Fuel Economy, Performance and Emissions

2020-04-14
2020-01-1280
As the FTP-75 drive cycle does not have a prescribed gear shift pattern, automotive OEMs have the flexibility to design. Conventionally, gear shift pattern was formulated based on trial and error method, typically with 10 to 12 iterations on chassis dynamometer. It was a time consuming (i.e. ~ 3 to 4 months) and expensive process. This approach led to declaring poor fuel economy (FE). A simulation procedure was required to generate a gear shift pattern that gives optimal trade-off amongst conflicting objectives (FE, performance and emissions). As a result, a simulation tool was developed in MATLAB to generate an optimum gear shift pattern. Three different SUV/UV models were used as test vehicles in this study. Chassis dyno testing was conducted, and data was collected using the base and optimized gear shift patterns. Dyno test results with optimized gear shift pattern showed FE improvement of ~ 4 to 5% while retaining the NOx margin well above engineering targets.
Technical Paper

EGR Flow Control Strategy for a Smaller Capacity Diesel Engine Using a Phase Shifting Chamber

2020-04-14
2020-01-1358
Exhaust gas recirculation (EGR) is an effective strategy to control NOx emissions in diesel engines. EGR reduces NOx through lowering the oxygen concentration in the combustion chamber, as well as through heat absorption. The stringent emission norms have forced diesel engines to further improve thermal efficiency and reduce nitrogen oxides (NOx). Throttle control is adopted in diesel intake system to control the EGR & fresh charge flow and to meet the emissions norms. In three or lesser cylinder. diesel engines, predominantly single and two-cylinder diesel engines, there is a higher possibility of the exhaust gas reaching the intake throttle and Particulate matter getting deposited on the throttle body. This can significantly affect the idling stability and intake restriction in prolonged usage. In idling condition, the clogged throttle body stagnates the fresh charge from entering the cylinder. The work aims at the study of flow pattern for EGR reaching the throttle body.
Technical Paper

Fuel Efficiency Simulation Methodology for Commercial Vehicles: Approach to Generate Dynamic Duty Cycles for Simulation

2021-09-22
2021-26-0343
Fuel efficiency is critical aspect for commercial vehicles as fuel is major part of operational costs. To complicate scenario further, fuel efficiency testing, unlike in passenger cars is more time consuming and laborious. Thus, to save on development cost and save time in actual testing, simulations plays crucial role. Typically, actual vehicle speed and gear usage is captured using reference vehicle in desired route and used it for simulation of target vehicle. Limitation to this approach is captured duty cycle is specific to powertrain and driver behavior of reference vehicle. Any change in powertrain or vehicle resistance or driver of target vehicle will alter duty cycle and hence duty cycle of reference vehicle is no more valid for simulation assessment. This paper demonstrates approach which uses combination of tools to address this challenge. Simulation approach proposed here have three parts.
Technical Paper

Frictional Power Loss Distribution of Automotive Axles - Experimental Evaluation and Analysis

2021-09-22
2021-26-0483
The given paper presents the main elements of frictional power loss distribution in an automotive axle for passenger car. For reference two different axles were compared of two different sizes to understand the impact of size and ratio of gear and bearings on power loss characteristics. It was observed that ~50% of total axle power loss is because of pinion head-tail bearing and its seals, which is very significant. Roughly 30% of total power loss is contributed by pinion-ring gear pair and differential bearings and remaining ~20% by wheel end bearing and seals. With this study the automotive companies can take note of the area where they need to focus more to reduce their CO2 emissions to meet the stringent BS6, CAFÉ and RDE emission norms.
Technical Paper

Investigation and Mitigation of Brake Squeal Noise in Medium Commercial Vehicle

2020-10-05
2020-01-1607
The braking systems for modern day commercial vehicles with GVWs ranging above 7.5 metric tons use the typical s-cam drum brake system, where pressurized air is the actuating medium. The s-cam drum brake systems are popular today even after the advent and penetration of air disc brake systems, the main reasons being, cost-effectiveness, robustness, satisfactory performance and good component life. However, the brake systems of commercial vehicles (both M and N category) are frequently grappled with NVH issues particularly in the form of brake squeal noise (low frequency and high frequency). The noise with frequency more than 500 Hz can be generally defined as brake squeal. There has been a lot of work done and is being continued, at theoretical level, analytical level and experimental level to tackle with this issue.
Technical Paper

Investigation and Resolution of Vehicle Brake Judder

2020-10-05
2020-01-1609
One of the major discomforts while driving any medium to heavy commercial vehicle is brake judder. Brake judder can be defined as vibrations felt on steering wheel or brake pedal or cabin floor, when brakes are applied at certain speeds and pressures. The frequencies of this judder lie as high as 100 Hz to as low as 20 Hz. The brake judder is caused by a number of factors, which makes providing a universal solution difficult. Some of the causes are related to part fitment, part quality, material selection, manufacturing process, Design consideration, environmental factors, etc. This paper gives us a brief idea about resolution of judder problem in intermediate commercial vehicle by series of trials and this methodology can be applied in heavy commercial vehicles also. This paper gives reader an insight about step by step root cause analysis of brake judder on actual vehicle and an approach in resolving the judder problem.
Technical Paper

Methodology for Investigation and Resolution of Zero/Low/Unstable Brake Lining Gap Concern in S-Cam Brake System

2020-10-05
2020-01-1641
S-cam air brake system is provided in almost all commercial vehicles having tonnage above 7.5-ton. In S-Cam brake system, drum to brake lining gap (henceforth referred to as ‘brake lining gap’ or simply ‘gap’ for convenience) range is an important factor which can impact braking behavior during brake application. Different OEMs (Original Equipment Manufacturers) define different brake lining gap ranges between S-cam brake lining and drum. This range depends majorly on the internal mechanism deployed in ASA (Auto Slack Adjuster). When these brake lining gaps start lowering i.e. when they fall in the range of 0 to 0.4 mm, or they become unstable (checked by feeler gauge at inspection window provided on dust cover of S-cam) then it starts impacting brake behavior in the subject vehicles.
Journal Article

Development of Hydrogen Fuelled Low NOx Engine with Exhaust Gas Recirculation and Exhaust after Treatment

2017-01-10
2017-26-0074
Air pollution caused by vehicular tail pipe emissions has become a matter of grave concern in major cities of the world. Hydrogen, a carbon free fuel is a clean burning fuel with only concern being oxides of nitrogen (NOx) formed. The present study focuses on the development of a hydrogen powered multi-cylinder engine with low NOx emissions. The NOx emissions were reduced using a combination of an in-cylinder control strategy viz. Exhaust Gas Recirculation (EGR) and an after treatment method using hydrogen as a NOx reductant. In the present study, the low speed torque of the hydrogen engine was improved by 38.46% from 65 Nm to 90 Nm @ 1200 rpm by operating at an equivalence of 0.64. The higher equivalence ratio operation compared to the conventional low equivalence ratio operation lead to an increase in the torque generated but increased NOx as well.
Technical Paper

Objective Drivability Evaluation on Compact SUV and Comparison with Subjective Drivability

2017-01-10
2017-26-0153
Over the ages of automotive history, expectations of the customers increases vastly starting from driving comfort, better fuel economy and a safe vehicle. Requirement of good vehicle drivability from customers are increasing without any compromise of fuel economy and vehicle features. To enhance the product, it is a must for every OEM’s to have better drivability to fulfill the needs of the customer. This paper explains Objective Drivability Evaluation done on compact SUV vehicle and comparison with subjective drivability. Vehicle manufacturer usually evaluate drivability based on the subjective assessments of experienced test drivers with a sequence of certain maneuvers. In this study, we have used the objective drivability assessment tool AVL drive to obtain the vehicle drivability rating. The vehicle inputs from the accelerometer sensor which captures the longitudinal acceleration and CAN bus signals such as engine speed, vehicle speed, accelerator pedal, are fed into the software.
Technical Paper

Comparative Analysis of Strain based Fatigue Life Obtained from Uni-Axial and Multi-Axial Loading of an Automotive Twist Beam

2017-01-10
2017-26-0312
Twist beam is a type of suspension system that is based on an H or C shaped member typically used as a rear suspension system in small and medium sized cars. The front of the H member is connected to the body through rubber bushings and the rear portion carries the stub axle assembly. Suspension systems are usually subjected to multi-axial loads in service viz. vertical, longitudinal and lateral in the descending order of magnitude. Lab tests primarily include the roll durability of the twist beam wherein both the trailing arms are in out of phase and a lateral load test. Other tests involve testing the twist beam at the vehicle level either in multi-channel road simulators or driving the vehicle on the test tracks. This is highly time consuming and requires a full vehicle and longer product development time. Limited information is available in the fatigue life comparison of multi-axial loading vs pure roll or lateral load tests.
Technical Paper

Estimation of Clutch Life for Manual Transmission Vehicle Through Thermal Modeling of Clutch Housing and Clutch Facing

2017-10-08
2017-01-2439
Poor clutch life is a major issue for some light commercial vehicle models. Clutch overheating is the primary cause for clutch failure. Some of the reasons include inappropriate gear selection by the driver, poor low-end dynamic torque availability from an engine, heavy stop and go traffic, vehicle overloading resulting in excessive clutch slippage especially in gradients, riding of the clutch pedal by the customer etc. These situations lead to a high thermal energy dissipation at the clutch, increasing clutch wear and in extreme conditions leading to not only poor shift quality but also eventual clutch failure. Unfortunately, it is not practical to monitor clutch temperature in a production vehicle due to high costs or technical challenges involved. This paper describes 1-D thermal modeling of single plate dry clutch typically used in passenger car/truck and bus applications. The objective of simulation is to estimate the temperature rise on the clutch facing and clutch housing.
Technical Paper

Evaluation of Intercooler Efficiency as a Technique for Reducing Diesel Engine Emissions

2011-04-12
2011-01-1133
As the emission targets are getting tighter, efforts are made to improve the emission by all possible means. This work emphasis the potential of intercooler to reduce exhaust gas emissions (CO, HC, NOx and PM). A detailed analysis of experimental results on emissions is presented. The effect of intercooler efficiency on emissions is explained. A multi-utility vehicle equipped with common rail diesel engine was tested in NEDC cycle in chassis dynamometer. Ideally the vehicle emission lab should replicate a flat straight road condition & natural airflow. To obtain the airflow a variable velocity fan is used. The velocity of air emerging from the fan and relative position of the fan with vehicle has a significant role in intercooler efficiency and hence on emissions. This work explains the exercise carried out to correlate the intercooler efficiency and exhaust emissions with fan position and velocity.
Technical Paper

A Development of Booming Index of Diesel SUV by using Artificial Neural Network

2012-06-13
2012-01-1542
In today's competitive scenario, understanding mental modal map of individual customer perception plays a major role to create the brand image of vehicle. Among them “comfortable sound” is one of the important criteria for customer satisfaction, especially in case of diesel vehicle, where in-cab sound quality plays a crucial factor. Often customer perception concerning comfort in automotive industry relies on subjective comfort evaluation method. Converting the customer perception into objective measurements and to correlate them is often tough task for NVH engineers. It is because of human sensation behavior differs from persons to person, mental map, geographical location and domain knowledge. In addition acoustic & comfort relevant aspects are often subjectively evaluated based on jury trials conducted on the prototype vehicle and class competitive benchmark vehicles to get the feel & confidence of product for different gateways.
Technical Paper

Investigation on microstructure, mechanical and wear properties of alloyed gray cast iron for brake applications

2013-11-27
2013-01-2881
The strength and wear resistance of four alloyed cast irons with elements like Ni. Mo, Cu, Cr and Al have been compared and analyzed. The increased hardness is reducing the wear resistance of the alloy due to graphite flakes. Higher carbon produces more graphite flakes which act as weak points for reducing strength and wear resistance. The wear rate increases for harder cast iron sample with more graphite flakes. Wear rate drastically increases with increase in carbon equivalent. Strength was found to decrease for samples with higher graphite flakes. The wear debris consisted of graphite flakes in platelet like morphology along with iron particles from the matrix. The presence of carbon at the sliding interface also sometimes decreases wear rate.
Technical Paper

Emission Optimization Approach to Meet the Current Indian Emission Norm Without EGR Cooling for a Vehicle Equipped with Common Rail Diesel Engine

2014-03-24
2014-01-2022
In India, diesel engine powered vehicles are finding rising demand due to the subsidy offered on diesel. Currently, BS-IV emission norm (equivalent to E-IV in Europe) is in existence. To meet this emission norm, OEM look for improved engine design, use of common rail injection system, advanced after treatment. In the current article, a methodology is demonstrated by which the required emissions on multipurpose vehicle (MPV) powered with 2.2L common rail injection system was met with no need of EGR cooling. This was achieved by identifying the operating points from the BS-IV emission cycle where EGR cooling is beneficial. The next step involves assessing the loss of function due to its removal. The final step involves strategies which can bring the original optimized value of NOx-PM. Removal of EGR cooling avoids the cooling of intake charge and reduces the HC and CO emission. Also, it gets rid of complication in the under bonnet packaging and leads to maintenance free operation.
Technical Paper

Benefits of Variable Discharge Oil Pump on Performance of 3 Cylinder SI Engine

2017-01-10
2017-26-0051
Lubrication system is a critical factor for engine health. But it creates parasitic load and increased fuel consumption of the engine. The oil demand of an engine depends on engine speed, load, bearing clearances, operating temperature and engine's state of wear. Ideally, the oil pump should adapt the delivery volume flow to actual engine oil demand and should avoid unnecessary pumping of oil which causes increased power and fuel consumption. However in a conventional mechanical oil pump, there is no control on the oil flow and it is purely a function of operating speed. A variable discharge oil pump (VDOP) is an approach to reduce the parasitic losses wherein the oil flow is regulated based on the mechanical needs of the engine. This study is based on the results of a two stage VDOP installed on a 1.2 litre, 3 cylinder MPFI engine. The oil supply is regulated by a solenoid control which receives command from Engine Control Unit (ECU). The study was done in two stages.
X