Refine Your Search

Topic

Author

Search Results

Technical Paper

A Holistic Approach of Developing New High Strength Cast Iron for Weight Optimization

2021-09-22
2021-26-0244
Foundry industries are very much familiar and rich experience of producing ferrous castings mainly Flake Graphite (FG) and Spheroidal Graphite (SG) cast iron. Grey cast iron material is mainly used for dampening applications and spheroidal graphite cast iron is used in structural applications wherein high strength and moderate ductility is necessary to meet the functional requirements. However, both types of cast iron grades are very much suitable in terms of manufacturing in an economical way. Those grades are commercially available and being consumed in various industries like automotive, agriculture etc, High strength SG Iron grades also being manufactured by modifying the alloying elements with copper, chromium, manganese andcobalt. but it has its own limitation of reduction in elongation when moving from low to high strength SG iron material. To overcome this limitation a new cast iron developed by modifying the chemical composition.
Technical Paper

Engine out Particulate Emission Optimization with Multiple Injection Strategy for 3-Cylinder Turbo GDI E6d Engine

2021-09-22
2021-26-0070
With the increase in the number of automobiles on road, there is a very strong emphasis on reducing the air pollution which led to evolution of stringent emission norms. To meet these stringent emission norms, the ideal solution is to optimize the engine hardware and the combustion system to reduce the emission at source thereby reducing the dependency on exhaust after treatment system. Gasoline Direct Injection (GDI) engines are gaining popularity worldwide as they provide a balance between fun to drive and fuel efficiency. Controlling the particle emissions especially Particle Number (PN) is a challenge in GDI engines due to the nature of its combustion system. In this study, experiments were performed on a 1.2Litre 3-cylinder 250bar GDI engine to capture the effect of injection strategies on PN.
Technical Paper

Development of an all Speed Governed Diesel-CNG Dual Fuel Engine for Farm Applications

2021-09-22
2021-26-0101
This paper discusses the development of an all speed governed diesel-natural gas dual fuel engine for agricultural farm tractor. A 45 hp, 2.9 liters diesel-natural gas dual fuel engine with a novel closed loop secondary fuel injection system was developed. A frugal approach without any modification of the base mechanical diesel fuel injection system was followed. This approach helped to minimize the cost impact, while meeting performance and emissions at par with neat diesel operation. Additional cost on gas injection system is redeemed by cost savings on diesel fuel. The dual fuel technology developed by Mahindra & Mahindra Ltd., substitutes on an average approximately 40% of diesel with compressed natural gas, meeting the TREM III A emission norms for dual fuel while meeting all application requirements. The governing performance of the tractor was found to be superior than base diesel tractor.
Technical Paper

Development of Sensor Based Rotavator Unit For Display of Operational Parameters on Various Soil Conditions

2021-09-22
2021-26-0091
Rotavator is an active tillage implement for breaking the Soil and for the preparation of seed bed for cultivation. The Farmers are currently facing problem due to usage of sub optimal speed of Rotavator which results in more fuel consumption, takes more time for completion of operation. Also, the Current Rental models work on Tractor + Implement as rental combination and customer not able to rent Rotavator as a standalone implement due to non-availability of Tracking information such as hours of utilization on Rotavator. Farmers not able to maintain the service periodicity, if oil change not done in prescribed duration then it may result in improper maintenance and breakdown of the Rotavator. To overcome these problems a smart Rotavator developed consists of an electronic unit fitted on the Rotavator shaft to measure the speed of the shaft rotation and in turn convert to Rotavator speed and also able to convert into Hours of usage based on the starting and stopping of the rotavator.
Technical Paper

UDM Tip Temperature Control Using Thermosyphon Effect

2020-08-18
2020-28-0040
In today’s automobile industry where BS6 emission is posing a high challenge for aggregate development, cost control and with limited timeline. The main target is to provide the cooling system to have less impact on the in terms of cost, weight and to meet the challenging engineering requirement. Thus, the frugal engineering comes into the picture. This paper shows the application of thermosyphon principle for UDM injector cooling thereby reducing the rotation parts and power consumption such as an electric pump. Thermosyphon is a method of passive heat exchange and is based on natural convection, which circulates a fluid without the necessity of a mechanical or electric pump. The natural convection of the liquid commences when heat transfer to the liquid gives rise to a temperature difference from one side of the loop to the other.
Technical Paper

Gear Shift Pattern Optimization for Best Fuel Economy, Performance and Emissions

2020-04-14
2020-01-1280
As the FTP-75 drive cycle does not have a prescribed gear shift pattern, automotive OEMs have the flexibility to design. Conventionally, gear shift pattern was formulated based on trial and error method, typically with 10 to 12 iterations on chassis dynamometer. It was a time consuming (i.e. ~ 3 to 4 months) and expensive process. This approach led to declaring poor fuel economy (FE). A simulation procedure was required to generate a gear shift pattern that gives optimal trade-off amongst conflicting objectives (FE, performance and emissions). As a result, a simulation tool was developed in MATLAB to generate an optimum gear shift pattern. Three different SUV/UV models were used as test vehicles in this study. Chassis dyno testing was conducted, and data was collected using the base and optimized gear shift patterns. Dyno test results with optimized gear shift pattern showed FE improvement of ~ 4 to 5% while retaining the NOx margin well above engineering targets.
Technical Paper

EGR Flow Control Strategy for a Smaller Capacity Diesel Engine Using a Phase Shifting Chamber

2020-04-14
2020-01-1358
Exhaust gas recirculation (EGR) is an effective strategy to control NOx emissions in diesel engines. EGR reduces NOx through lowering the oxygen concentration in the combustion chamber, as well as through heat absorption. The stringent emission norms have forced diesel engines to further improve thermal efficiency and reduce nitrogen oxides (NOx). Throttle control is adopted in diesel intake system to control the EGR & fresh charge flow and to meet the emissions norms. In three or lesser cylinder. diesel engines, predominantly single and two-cylinder diesel engines, there is a higher possibility of the exhaust gas reaching the intake throttle and Particulate matter getting deposited on the throttle body. This can significantly affect the idling stability and intake restriction in prolonged usage. In idling condition, the clogged throttle body stagnates the fresh charge from entering the cylinder. The work aims at the study of flow pattern for EGR reaching the throttle body.
Technical Paper

Frictional Power Loss Distribution of Automotive Axles - Experimental Evaluation and Analysis

2021-09-22
2021-26-0483
The given paper presents the main elements of frictional power loss distribution in an automotive axle for passenger car. For reference two different axles were compared of two different sizes to understand the impact of size and ratio of gear and bearings on power loss characteristics. It was observed that ~50% of total axle power loss is because of pinion head-tail bearing and its seals, which is very significant. Roughly 30% of total power loss is contributed by pinion-ring gear pair and differential bearings and remaining ~20% by wheel end bearing and seals. With this study the automotive companies can take note of the area where they need to focus more to reduce their CO2 emissions to meet the stringent BS6, CAFÉ and RDE emission norms.
Technical Paper

Calibration and Parametric Investigations on Lean NOx Trap and Particulate Filter Models for a Light Duty Diesel Engine

2020-04-14
2020-01-0657
To comply with the stringent future emission mandates of light-duty diesel engines, it is essential to deploy a suitable combination of emission control devices like diesel oxidation catalyst (DOC), diesel particulate filter (DPF) and DeNOx converter (LNT or SCR). Arriving at optimum size and layout of these emission control devices for a particular engine through experiments is both time and cost-intensive. Thus, it becomes important to develop suitable well-tuned simulation models that can be helpful to optimize individual emission control devices as well as arrive at an optimal layout for achieving higher conversion efficiency at a minimal cost. Towards this objective, the present work intends to develop a one-dimensional Exhaust After Treatment Devices (EATD) model using a commercial code. The model parameters are fine-tuned based on experimental data. The EATD model is then validated with experiment data that are not used for tuning the model.
Technical Paper

Investigation and Resolution of Vehicle Brake Judder

2020-10-05
2020-01-1609
One of the major discomforts while driving any medium to heavy commercial vehicle is brake judder. Brake judder can be defined as vibrations felt on steering wheel or brake pedal or cabin floor, when brakes are applied at certain speeds and pressures. The frequencies of this judder lie as high as 100 Hz to as low as 20 Hz. The brake judder is caused by a number of factors, which makes providing a universal solution difficult. Some of the causes are related to part fitment, part quality, material selection, manufacturing process, Design consideration, environmental factors, etc. This paper gives us a brief idea about resolution of judder problem in intermediate commercial vehicle by series of trials and this methodology can be applied in heavy commercial vehicles also. This paper gives reader an insight about step by step root cause analysis of brake judder on actual vehicle and an approach in resolving the judder problem.
Technical Paper

Spot Weld Fatigue Correlation Improvement in Automotive Structures Using Stress Based Approach with Contact Modelling

2020-04-14
2020-01-0182
In automotive Body-In-White (BIW) structures, stiffness and the fatigue behavior is greatly influenced by the properties of its joints. Spot welding is one of the most widely used process for joining of sheet metals in BIW. Spot weld fatigue life under Accelerated Durability Test (ADT) is crucial for durability performance of BIW structures. Experience of BIW validations highlighted more number of spot weld failures in CAE when compared to actual tests. Hence, lot of iterations in the form of design modifications are required to be carried out to make these spot welds meet the targets which increases design & development time as well as cost. Current practice uses force-based approach for predicting spot weld fatigue life in CAE. To improve the spot weld fatigue life correlation, extensive study has been carried out on the approaches used for calculating spot weld fatigue life, namely force & stress-based approaches.
Technical Paper

Mold in Color Pianno Black PC Material for Automotive Exterior Application

2021-09-22
2021-26-0242
Aesthetics contribute significantly to the customer’s buying decision of an automobile. This is traditionally achieved through painting. Sustainability and cost challenges have led automakers to look at substituting painting through molded-in color polymers in decorative bezels like pillar appliques. These appliques and bezels have a unique mix of material requirements that include color tone, gloss, stiffness, scratch resistance and weathering. Polycarbonates are an interesting class of polymers that has the potential to meet these challenging requirements. This paper reports the work done in evaluating a polycarbonate compound in piano black shade to meet the functional and aesthetic requirements. The results prove that the material can substitute painting thereby resulting in significant cost savings. This is a ready to mold material used in injection molding process. This modified polycarbonate material has been explored for thin wall appliques and bezels with thickness of 2.7 mm.
Journal Article

Development of Hydrogen Fuelled Low NOx Engine with Exhaust Gas Recirculation and Exhaust after Treatment

2017-01-10
2017-26-0074
Air pollution caused by vehicular tail pipe emissions has become a matter of grave concern in major cities of the world. Hydrogen, a carbon free fuel is a clean burning fuel with only concern being oxides of nitrogen (NOx) formed. The present study focuses on the development of a hydrogen powered multi-cylinder engine with low NOx emissions. The NOx emissions were reduced using a combination of an in-cylinder control strategy viz. Exhaust Gas Recirculation (EGR) and an after treatment method using hydrogen as a NOx reductant. In the present study, the low speed torque of the hydrogen engine was improved by 38.46% from 65 Nm to 90 Nm @ 1200 rpm by operating at an equivalence of 0.64. The higher equivalence ratio operation compared to the conventional low equivalence ratio operation lead to an increase in the torque generated but increased NOx as well.
Technical Paper

Powertrain Mounted Exhaust System Failure Correlation and Methodology Development in CAE

2017-01-10
2017-26-0267
Exhaust system is one of the complex automotive systems in terms of performance and strength prediction due to combination of transient mechanical and thermal loads acting on it simultaneously. Traditionally, most of automotive vehicles have exhaust systems with hot end mounted on engine and cold end mounted on chassis or BIW through hangers. A new powertrain mounted exhaust system was developed in-house. This exhaust system underwent validation and evaluation during development phase. Durability concerns were observed on exhaust system in Track test and gear shift durability test. This paper focuses on identifying the root cause of these concerns based on the failures observed during evaluation in Accelerated Durability (ADT) and gear shift durability (GSD) tests. Based on the architecture and packaging space challenges in vehicle, engine is mounted on two mounts and a roll restrictor. Muffler, which has higher inertia, is mounted at higher offset with respect to engine rolling axis.
Technical Paper

Durability Analysis Methodology of Tractor Hydraulic Bell Crank Assembly for Various Agricultural Operations

2017-01-10
2017-26-0235
A tractor is vehicle specifically designed to deliver a high tractive effort at slow speeds for carrying out various agriculture operations like ploughing, rotavation etc. using implement. Hydraulic system is a key feature which connects these implements with the tractor. It controls the position and draft of the implement depending upon the type of crop, farming stage, implement type and soil conditions. These variations induces extreme range of load on the hydraulic system, thus making it challenging to design these components. Bell crank assembly is one of the main components of hydraulic system which controls the draft (thus, the loads experienced by tractor) through load sensing mechanism. Often bell crank assembly failures are reported from field due to uneven soil hardness and presence of rocks. This paper studies one of such bell crank assembly failures in the field. The failure was reported after half life cycle of usage during agriculture Operation.
Technical Paper

Comparative Analysis of Strain based Fatigue Life Obtained from Uni-Axial and Multi-Axial Loading of an Automotive Twist Beam

2017-01-10
2017-26-0312
Twist beam is a type of suspension system that is based on an H or C shaped member typically used as a rear suspension system in small and medium sized cars. The front of the H member is connected to the body through rubber bushings and the rear portion carries the stub axle assembly. Suspension systems are usually subjected to multi-axial loads in service viz. vertical, longitudinal and lateral in the descending order of magnitude. Lab tests primarily include the roll durability of the twist beam wherein both the trailing arms are in out of phase and a lateral load test. Other tests involve testing the twist beam at the vehicle level either in multi-channel road simulators or driving the vehicle on the test tracks. This is highly time consuming and requires a full vehicle and longer product development time. Limited information is available in the fatigue life comparison of multi-axial loading vs pure roll or lateral load tests.
Technical Paper

Evaluation of Intercooler Efficiency as a Technique for Reducing Diesel Engine Emissions

2011-04-12
2011-01-1133
As the emission targets are getting tighter, efforts are made to improve the emission by all possible means. This work emphasis the potential of intercooler to reduce exhaust gas emissions (CO, HC, NOx and PM). A detailed analysis of experimental results on emissions is presented. The effect of intercooler efficiency on emissions is explained. A multi-utility vehicle equipped with common rail diesel engine was tested in NEDC cycle in chassis dynamometer. Ideally the vehicle emission lab should replicate a flat straight road condition & natural airflow. To obtain the airflow a variable velocity fan is used. The velocity of air emerging from the fan and relative position of the fan with vehicle has a significant role in intercooler efficiency and hence on emissions. This work explains the exercise carried out to correlate the intercooler efficiency and exhaust emissions with fan position and velocity.
Technical Paper

Turbocharging a Small Two Cylinder DI Diesel Engine - Experiences in Improving the Power, Low End Torque and Specific Fuel Consumption

2011-09-11
2011-24-0133
Turbocharged common rail direct injection engines offer multiple benefits compared to their naturally aspirated counterparts by allowing for a significant increase in the power and torque output, while simultaneously improving the specific fuel consumption and smoke. They also make it possible for the engine to operate at a leaner air/fuel mixture ratio, thereby reducing particulate matter emission and permitting higher EGR flow rates. In the present work, a two cylinder, naturally aspirated common rail injected engine for use on a load carrier platform has been fitted with a turbocharger for improving the power and torque output, so that the engine can be used in a vehicle with a higher kerb weight. The basic architecture and hardware remain unchanged between the naturally aspirated and turbocharged versions. A fixed geometry, waste gated turbocharger with intercooling is used.
Technical Paper

Polypropylene Copolymer Material for Automotive Thin Wall Front Bumper with Integrated Grill Application

2018-04-03
2018-01-0153
This paper describes modified polypropylene copolymer (PPCP) material for thin wall front bumper development (2.5 mm) with integrated grill in automotive application. This compounded PPCP material has optimized flow behavior, tensile strength, modulus, impact strength, and thermal properties to meet the functional requirements. This is a ready to mold material used in injection molding process. Front bumper and grill are functional components with slow speed impact requirement to absorb impact in real world. These parts have precise fitment requirement under sun load condition. Front bumper is also having other critical criteria with respect to vehicle variants such as aesthetic mold-in-color finish as well as painted finish. Grill has air entry performance criteria to ensure cooling efficiency in intercooler compartment.
Technical Paper

Duty Cycle Fatigue Simulation for Differential Casing

2012-04-16
2012-01-0813
In the current scenario of growing demand for lightweight designs for improving fuel economy and reduced cost, the focus is on optimum design solutions. This calls for improved and accurate prediction capabilities in terms of life or cycles the design can sustain in real world usage profile. Conventionally, the differential casings are simulated and designed for worst loads experienced and the approach used is infinite life design for these loads. But, this would lead to overdesign and increase weight. To counter this problem the methodology for fatigue analysis for the derived duty cycle of differential casing is developed. The critical regions can be identified based on life and the solutions can be worked out without major design changes. This paper briefs the nonlinear static load cases required for deriving the block cycle loading and incorporating these as a duty cycle in fatigue solver.
X