Refine Your Search

Topic

Author

Search Results

Journal Article

Shifter Fork Stiffness Correlation to Gear Shift Quality

2013-09-24
2013-01-2447
Shift quality of a manual transmission is a critical characteristic that requires utmost care while structuring the transmission. Shift quality is affected by many factors viz. synchronizer design, shifter design, gear design, transmission oil selection etc. This paper presents a correlation between stiffness of the shift fork in manual transmission with the gear shift quality using a gear shift quality assessment setup. Stiffness of shifter fork is optimized using contact pattern analysis and stiffness analysis on MSC Nastran. All the subsystem (i.e. synchronizer and the shift system component) are constrained to optimize the shift fork stiffness. A-5-speed manual transmission is used as an example to illustrate the same. A direct correlation of gear shift fork stiffness with the shift force experienced by the driver is established. The shift system was modeled in the UG NX 6.0 software to collate the synchronization force, shift system gap etc with the constraint on the shift fork.
Technical Paper

Improvement in the Brake Pedal Feel Comfort for Light Commercial Vehicles with Hydraulic Brake System

2021-09-22
2021-26-0515
Being a safety critical aggregate, every aspect of brake system is considered significant in vehicles operations. Along with optimum performance of brake system in terms of deceleration generation, brake pedal feel or brake feel is considered as one of the key elements while evaluating brake system of vehicles. There are many factors such as liner and drum condition, road surface, friction between linkages which impress the pedal feel. Out of these, in this paper we will be discussing the factors which influence the brake pedal feel in relation to the driver comfort and confidence building. Under optimum braking condition, brake operation must be completed with pedal effort not very less or not very high, brake pedal feel must be firm throughout the operation, in such a way that it will not create fatigue and at the same time it will give enough confidence to the driver while operating with acceptable travel.
Technical Paper

UDM Tip Temperature Control Using Thermosyphon Effect

2020-08-18
2020-28-0040
In today’s automobile industry where BS6 emission is posing a high challenge for aggregate development, cost control and with limited timeline. The main target is to provide the cooling system to have less impact on the in terms of cost, weight and to meet the challenging engineering requirement. Thus, the frugal engineering comes into the picture. This paper shows the application of thermosyphon principle for UDM injector cooling thereby reducing the rotation parts and power consumption such as an electric pump. Thermosyphon is a method of passive heat exchange and is based on natural convection, which circulates a fluid without the necessity of a mechanical or electric pump. The natural convection of the liquid commences when heat transfer to the liquid gives rise to a temperature difference from one side of the loop to the other.
Technical Paper

Development of a Component Level Test Methodology to Validate the Transmission Bush of a Manual Gear Box

2020-04-14
2020-01-1409
In the era of fierce competition, launching a defect free product on time would be the key to success. In a modern automobile, the transmission system is designed with utmost care in order to transfer the maximum power from engine to driveline smoothly and efficiently. Optimized design of all the transmission components is necessary in order to meet the power requirement with the least possible weight. This optimization may require gear designs with different internal diameters. The assembly of these gears may not be possible on a solid transmission shaft. To facilitate assembling while retaining optimum design of transmission parts, a separate bush is designed to overcome this limitation. Some bushes may require a flange to restrict any free play of the mounted gear in its axial direction. During complete system level testing of one newly developed manual transmission, bush failure was observed.
Technical Paper

Fuel Efficiency Simulation Methodology for Commercial Vehicles: Approach to Generate Dynamic Duty Cycles for Simulation

2021-09-22
2021-26-0343
Fuel efficiency is critical aspect for commercial vehicles as fuel is major part of operational costs. To complicate scenario further, fuel efficiency testing, unlike in passenger cars is more time consuming and laborious. Thus, to save on development cost and save time in actual testing, simulations plays crucial role. Typically, actual vehicle speed and gear usage is captured using reference vehicle in desired route and used it for simulation of target vehicle. Limitation to this approach is captured duty cycle is specific to powertrain and driver behavior of reference vehicle. Any change in powertrain or vehicle resistance or driver of target vehicle will alter duty cycle and hence duty cycle of reference vehicle is no more valid for simulation assessment. This paper demonstrates approach which uses combination of tools to address this challenge. Simulation approach proposed here have three parts.
Technical Paper

Frictional Power Loss Distribution of Automotive Axles - Experimental Evaluation and Analysis

2021-09-22
2021-26-0483
The given paper presents the main elements of frictional power loss distribution in an automotive axle for passenger car. For reference two different axles were compared of two different sizes to understand the impact of size and ratio of gear and bearings on power loss characteristics. It was observed that ~50% of total axle power loss is because of pinion head-tail bearing and its seals, which is very significant. Roughly 30% of total power loss is contributed by pinion-ring gear pair and differential bearings and remaining ~20% by wheel end bearing and seals. With this study the automotive companies can take note of the area where they need to focus more to reduce their CO2 emissions to meet the stringent BS6, CAFÉ and RDE emission norms.
Technical Paper

A Case Study of Compressor Surge Related Noise on Turbocharged 2.0-L Gasoline Engine

2021-09-22
2021-26-0282
Till recently supercharging was the most accepted technique for boost solution in gasoline engines. Recent advents in turbochargers introduced turbocharging technology into gasoline engines. Turbocharging of gasoline engines has helped in powertrains with higher power density and less overall weight. Along with the advantages in performance, new challenges arise, both in terms of thermal management as well as overall acoustic performance of powertrains. The study focuses mainly on NVH aspects of turbocharging of gasoline engines. Compressor surge is a most common phenomenon in turbochargers. As the operating point on the compressor map moves closer to the surge line, the compressor starts to generate noise. The amplitude and frequency of the noise depends on the proximity of the operating point to the surge line. The severity of noise can be reduced by selecting a turbocharger with enough compressor surge margin.
Technical Paper

Analytical Design and Development for Automobile Powertrain Mounts Using Low Fidelity Calculators

2016-02-01
2016-28-0185
The excitation to a vehicle is from two sources, road excitation and powertrain excitation. Vehicle Suspension is designed to isolate the road excitation coming to passenger cabin. Powertrain mounts play a vital role in isolating the engine excitation. The current study focuses on developing an analytical approach using Low-Fidelity computer programs to design the Powertrain Mount layout and stiffness during the initial stage of product development. Three programs have been developed as a part of this study that satisfy the packaging needs, NVH requirements and static load bearing requirements. The applications are capable of providing the Kinetic Energy Distribution and Static Analysis (Powertrain Enveloping and Mount Durability) for 3-point and 4-point mounting systems and the ideal mount positions and stiffness for 3-point mounting systems.
Technical Paper

Investigation and Mitigation of Brake Squeal Noise in Medium Commercial Vehicle

2020-10-05
2020-01-1607
The braking systems for modern day commercial vehicles with GVWs ranging above 7.5 metric tons use the typical s-cam drum brake system, where pressurized air is the actuating medium. The s-cam drum brake systems are popular today even after the advent and penetration of air disc brake systems, the main reasons being, cost-effectiveness, robustness, satisfactory performance and good component life. However, the brake systems of commercial vehicles (both M and N category) are frequently grappled with NVH issues particularly in the form of brake squeal noise (low frequency and high frequency). The noise with frequency more than 500 Hz can be generally defined as brake squeal. There has been a lot of work done and is being continued, at theoretical level, analytical level and experimental level to tackle with this issue.
Technical Paper

Investigation and Resolution of Vehicle Brake Judder

2020-10-05
2020-01-1609
One of the major discomforts while driving any medium to heavy commercial vehicle is brake judder. Brake judder can be defined as vibrations felt on steering wheel or brake pedal or cabin floor, when brakes are applied at certain speeds and pressures. The frequencies of this judder lie as high as 100 Hz to as low as 20 Hz. The brake judder is caused by a number of factors, which makes providing a universal solution difficult. Some of the causes are related to part fitment, part quality, material selection, manufacturing process, Design consideration, environmental factors, etc. This paper gives us a brief idea about resolution of judder problem in intermediate commercial vehicle by series of trials and this methodology can be applied in heavy commercial vehicles also. This paper gives reader an insight about step by step root cause analysis of brake judder on actual vehicle and an approach in resolving the judder problem.
Technical Paper

Methodology for Investigation and Resolution of Zero/Low/Unstable Brake Lining Gap Concern in S-Cam Brake System

2020-10-05
2020-01-1641
S-cam air brake system is provided in almost all commercial vehicles having tonnage above 7.5-ton. In S-Cam brake system, drum to brake lining gap (henceforth referred to as ‘brake lining gap’ or simply ‘gap’ for convenience) range is an important factor which can impact braking behavior during brake application. Different OEMs (Original Equipment Manufacturers) define different brake lining gap ranges between S-cam brake lining and drum. This range depends majorly on the internal mechanism deployed in ASA (Auto Slack Adjuster). When these brake lining gaps start lowering i.e. when they fall in the range of 0 to 0.4 mm, or they become unstable (checked by feeler gauge at inspection window provided on dust cover of S-cam) then it starts impacting brake behavior in the subject vehicles.
Technical Paper

Powertrain Mounted Exhaust System Failure Correlation and Methodology Development in CAE

2017-01-10
2017-26-0267
Exhaust system is one of the complex automotive systems in terms of performance and strength prediction due to combination of transient mechanical and thermal loads acting on it simultaneously. Traditionally, most of automotive vehicles have exhaust systems with hot end mounted on engine and cold end mounted on chassis or BIW through hangers. A new powertrain mounted exhaust system was developed in-house. This exhaust system underwent validation and evaluation during development phase. Durability concerns were observed on exhaust system in Track test and gear shift durability test. This paper focuses on identifying the root cause of these concerns based on the failures observed during evaluation in Accelerated Durability (ADT) and gear shift durability (GSD) tests. Based on the architecture and packaging space challenges in vehicle, engine is mounted on two mounts and a roll restrictor. Muffler, which has higher inertia, is mounted at higher offset with respect to engine rolling axis.
Technical Paper

Experimental Measurement to Predict Power Steering Pump Hub Load with Implementation of Belt Driven Starter Generator

2017-01-10
2017-26-0149
The present scenario in automobile industry is formed on developing smart vehicles by introducing various feature towards fuel efficient, low emission, weight reduction, and advance safety feature with hybrid and micro-hybrid vehicles. One such feature gaining more popularity is the Belt Driven Starter Generator [1] for its contribution towards fuel efficiency, emission reduction [2], weight reduction and convenient packaging with engine/electrical interface. However this invention puts challenge of integration and increase in loading to various system like power steering pump and crank shaft pulley, as all these systems are interlinked with a common belt. In this interface links we observed the steering pump hub under risk of structural failure due to additional load to support Belt Driven Starter Generator. Failure to identify safe limits of hub load can affect safe vehicle operation [3].
Technical Paper

Gear Shift Fork Stiffness Optimisation

2011-09-13
2011-01-2235
This paper presents a simulation of the stiffness of the shift fork of a manual transmission using contact pattern analysis and optistrut. All the subsystem (i.e. synchronizer and the shift system component) are constrained to optimize the shift fork stiffness. A-5-speed manual transmission is used as an example to illustrate the simulation, co-relation and validation of the optimization of the gear shift fork stiffness. The shift system was modeled in the software to collate the synchronization force, shift system gap etc with the constraint on the shift fork. It is constrained by the synchronizer sleeve and the fork mounting on the gear shift rail. The synchronizer force is then applied on the gear shift fork pads which are translated to the synchronizer sleeve. It has a number of pads which come into contact at different occasion of the synchronization because of the varying stiffness of the fork.
Technical Paper

Turbocharging a Small Two Cylinder DI Diesel Engine - Experiences in Improving the Power, Low End Torque and Specific Fuel Consumption

2011-09-11
2011-24-0133
Turbocharged common rail direct injection engines offer multiple benefits compared to their naturally aspirated counterparts by allowing for a significant increase in the power and torque output, while simultaneously improving the specific fuel consumption and smoke. They also make it possible for the engine to operate at a leaner air/fuel mixture ratio, thereby reducing particulate matter emission and permitting higher EGR flow rates. In the present work, a two cylinder, naturally aspirated common rail injected engine for use on a load carrier platform has been fitted with a turbocharger for improving the power and torque output, so that the engine can be used in a vehicle with a higher kerb weight. The basic architecture and hardware remain unchanged between the naturally aspirated and turbocharged versions. A fixed geometry, waste gated turbocharger with intercooling is used.
Technical Paper

Polypropylene Copolymer Material for Automotive Thin Wall Front Bumper with Integrated Grill Application

2018-04-03
2018-01-0153
This paper describes modified polypropylene copolymer (PPCP) material for thin wall front bumper development (2.5 mm) with integrated grill in automotive application. This compounded PPCP material has optimized flow behavior, tensile strength, modulus, impact strength, and thermal properties to meet the functional requirements. This is a ready to mold material used in injection molding process. Front bumper and grill are functional components with slow speed impact requirement to absorb impact in real world. These parts have precise fitment requirement under sun load condition. Front bumper is also having other critical criteria with respect to vehicle variants such as aesthetic mold-in-color finish as well as painted finish. Grill has air entry performance criteria to ensure cooling efficiency in intercooler compartment.
Technical Paper

Design of a Single Rail Internal Gear Shift System for a 5 Speed Manual Transmission

2013-04-08
2013-01-1771
This paper presents the detailed design of a Single Rail Internal Gear Shift System for a 5-speed manual transmission of a load carrier vehicle. Gear shifting in manual transmissions is achieved by actuating a synchronizer sleeve and engaging it with the required gear. Actuation of synchronizer sleeves is effected by gear shift forks which are supported in the transmission by a rail/shaft. Conventional 5-speed transmissions use Multi Rail Gear shift systems, wherein each of the forks viz. Fork 1-2, Fork3-4 & Fork 5th, for actuating the synchronizer sleeves, are supported by and fixed to individual rails. This paper presents the design of a Single Rail Gear shift system, wherein all the gear shift forks will be supported on a common rail/shaft, thus making the entire system compact and reducing the system weight. The Single Rail, in the proposed design, apart from supporting the three forks, also serves to actuate the Reverse Gear, which is of sliding mesh type in this case.
Technical Paper

Setting of Inspection Parameters for Automotive Transmission Parts in Various Bench Tests

2013-09-24
2013-01-2448
This paper deals with setting of Inspection parameters for selected automotive transmission parts in various bench tests. This paper we are discuss about critical dimension's measured for particular type of test. It is not possible to measure all the dimensions of a component for doing a particular test. This is due to time constraints set by program delivery deadlines. From above statement it can be deduced that it is almost impossible to measure all dimensions of a component. A bench level test may consist of two major tests. They are maximum load test and gear shift durability test. The maximum load test deals with gear box durability test and torque carrying capacity of gearbox. Parameters to be measured for some of above parts will be identified. More importantly it will also identify see reasons for that parameter to be measured.
Technical Paper

Weight Reduction of Shifter Forks using Steel Inserts

2013-09-24
2013-01-2444
Shift quality of a manual transmission is a critical characteristic that is requires utmost care by the designers while structuring the transmission. Shift quality is affected by many factors viz. synchronizer design, shift fork design, shifter design, gear design, transmission oil selection etc. Designers have realized that shift fork is critical element for improving shift feel of a transmission. This paper focuses upon the reduction in weight of the overall transmission shift system by using steel inserts in aluminum shifter forks. No compromise on the stiffness and strength of the shift fork of a manual transmission is done. Stiffness and strength of shifter fork is optimized using contact pattern analysis and stiffness analysis on MSC Nastran. All the subsystem (i.e. synchronizer and the shift system component) are constrained to optimize the shift fork stiffness. A 5-speed manual transmission is used as an example to illustrate the same.
X