Refine Your Search

Topic

Search Results

Viewing 1 to 16 of 16
Journal Article

An Experimental Study of Turbocharged Hydrogen Fuelled Internal Combustion Engine

2015-01-14
2015-26-0051
Hydrogen is considered as one of the potential alternate fuel and when compared to other alternate fuels like CNG, LPG, Ethanol etc., it has unique properties due to absence of carbon. In the current work, Hydrogen engine of 2.5 L, four cylinder, spark ignited Turbocharged-Intercooled engine is developed for Mini Bus application. Multi-point fuel injection system is used for injecting the hydrogen in the intake manifold. Initially, boost simulation is performed to select the optimum compression ratio and turbocharger. The literature review has shown that in-order to get the minimum NOx emissions Hydrogen engines must be operated between equivalence ratios ranging from 0.5 to 0.6. In the present study, full throttle performance is conducted mainly with the above equivalence ratio range with minimum advance for Maximum Brake Torque (MBT) ignition timing. At each operating point, the performance, emissions and combustion parameters are recorded and analyzed in detail.
Technical Paper

Improvement in the Brake Pedal Feel Comfort for Light Commercial Vehicles with Hydraulic Brake System

2021-09-22
2021-26-0515
Being a safety critical aggregate, every aspect of brake system is considered significant in vehicles operations. Along with optimum performance of brake system in terms of deceleration generation, brake pedal feel or brake feel is considered as one of the key elements while evaluating brake system of vehicles. There are many factors such as liner and drum condition, road surface, friction between linkages which impress the pedal feel. Out of these, in this paper we will be discussing the factors which influence the brake pedal feel in relation to the driver comfort and confidence building. Under optimum braking condition, brake operation must be completed with pedal effort not very less or not very high, brake pedal feel must be firm throughout the operation, in such a way that it will not create fatigue and at the same time it will give enough confidence to the driver while operating with acceptable travel.
Technical Paper

Fuel Efficiency Simulation Methodology for Commercial Vehicles: Approach to Generate Dynamic Duty Cycles for Simulation

2021-09-22
2021-26-0343
Fuel efficiency is critical aspect for commercial vehicles as fuel is major part of operational costs. To complicate scenario further, fuel efficiency testing, unlike in passenger cars is more time consuming and laborious. Thus, to save on development cost and save time in actual testing, simulations plays crucial role. Typically, actual vehicle speed and gear usage is captured using reference vehicle in desired route and used it for simulation of target vehicle. Limitation to this approach is captured duty cycle is specific to powertrain and driver behavior of reference vehicle. Any change in powertrain or vehicle resistance or driver of target vehicle will alter duty cycle and hence duty cycle of reference vehicle is no more valid for simulation assessment. This paper demonstrates approach which uses combination of tools to address this challenge. Simulation approach proposed here have three parts.
Technical Paper

DMADV Approach for Engineering Optimization and Quality - Application and Adaptability in Indian Automobile Industry

2017-07-10
2017-28-1930
Indian Automobile Industry has started using Six Sigma for Vehicle Design and process improvement to compete with Global competition. This Paper describes how the Tools of Six Sigma shall be used as an Effective Tool for both redefining the Design and the Process Improvement. This Paper talks on the evolution of DMADV approach in Indian Automobile Industry compared to the related Trends in Other Manufacturing Sectors. The Author describes how the warranty failures in Commercial Segment Vehicle Category which was the selling talk for the Competition was addressed in Leading Indian Automobile OEM. As this Failure was adversely impacting customer satisfaction and no solution seemed forthcoming, top Management indicated to use a radically different approach to solve the problem within a years’ time.
Technical Paper

Vehicle Interior Space Optimization through Occupant Seating Layout Apportioning

2017-07-10
2017-28-1923
Digital human models (DHM) have greatly enhanced design for the automotive environment. The major advantage of the DHMs today is their ability to quickly test a broad range of the population within specific design parameters. The need to create expensive prototypes and run time consuming clinics can be significantly reduced. However, while the anthropometric databases within these models are comprehensive, the ability to position the manikin’s posture is limited and needs lot of optimization. This study enhances the occupant postures and their seating positions, in all instances the occupant was instructed to adjust to the vehicle parameters so they were in their most comfortable position. While all the Occupants are accommodated to their respective positions which finally can be stacked up for space assessments. This paper aims at simulating those scenarios for different percentiles / population which will further aid in decision making for critical parameters.
Technical Paper

Diagnosis and Elimination of Disc Brake Groan in a Utility Vehicle

2014-04-01
2014-01-0043
Brake groan noise is resolved without any major change in the design of brake system and vehicle sub-system components in the development phase of a utility vehicle. The groan noise is observed during the end of the stopping of the vehicle under moderate braking. The concerned NVH issue is perceived as unacceptable noise in the passenger compartment. Groan induced vibration is subjectively felt on steering and seat frame. A typical process is established to successfully reproduce the groan which helped in precisely evaluating the effect of modifications proposed. The temperature range of the disc which has the highest probability to produce the groan noise is found out experimentally. The transfer path analysis is carried out to find the path contributions from suspension. Acoustic transfer functions from considered paths are measured with the suspension removed from vehicle.
Technical Paper

New Simulation Methodology for Improved Visual Interaction between Physical Test and CAE in Seat Anchorage Test

2016-02-01
2016-28-0226
For effective occupant protection, automotive vehicle structure needs to be developed for seat anchorage test to prevent the failure of seat anchorages during high speed impacts. Seat anchorages (SA) certification test is mandatory for M & N category vehicles in India. Conventional way of testing automotive vehicle structures for seat anchorage test is using deceleration sled with the help of bungee ropes. Deceleration pulse generated from the physical test is used as a loading input in the current CAE process. With the current CAE method, final deformation of the vehicle structure looks similar to physical test, however, the vehicle visual interactions differ significantly during the deformation event. In the current study, a modified loading methodology is proposed to match both the final deformation as well as vehicle visual interactions. Loading and boundary conditions of physical test were understood in detail with the help of simple free body diagrams.
Technical Paper

Optimizing OSRVM Package for Maximizing In-vehicle Visibility

2015-09-29
2015-01-2837
Overall in-vehicle visibility is considered as a key safety parameter essentially mandated due to the increasing traffic scenario as seen in developing countries. Driver side bottom corner visibility is one such parameter primarily defined by A-pillar bottom and outside rear-view mirror (OSRVM). While defining the OSRVM package requirements such as size, position and regulatory aspects, it is also vital to consider other influencing parameters such as position of pillars, waist-line height, and Instrument panel which affect the in-vehicle visibility. This study explains the various package considerations, methods to optimize OSRVM position, shape and housing design in order to maximize the in-vehicle visibility considering the road and traffic conditions. A detailed study on in-vehicle visibility impacted by OSRVM packaging explained and had been verified for the results.
Technical Paper

Development of Vehicle Occupant Head Movement Envelope for Indian Population

2015-01-14
2015-26-0151
Recent trends in vehicle occupant protection have led to renewed interest in the perception of Roominess such as headroom, shoulder room and foot room etc. Occupants head room in vehicles is currently measured using tools, procedures and definitions described in SAE J1052 and J1100. “Head Position Contours” defined in SAE J1052 are useful in establishing accommodation requirements for head space [1]. With respect to the Indian Anthropometry database, the head position contour as per SAE J1052 will not be appropriate with Indian population. With this objective in mind a head movement envelope is generated using the software - RAMSIS Digital manikin. RAMSIS is widely used by Automobile Manufacturers for Digital Human Modeling. The head movement envelope is a collation of different movements of head during driving condition.
Technical Paper

Ergonomic Study of Occupant Seating Using Near-Vertical Posture for Shared Mobility Applications

2020-09-25
2020-28-0519
Transportation system is at the brink of revolution and many new ways of mobility are arising in the market to ease the pressure on the established transportation infrastructure. Many companies and governments around the world are exploring innovative options in the space of shared mobility to reduce the overall carbon footprint. To expedite the adoption of shared mobility in India, it is necessary to make such options comfortable and cost-effective. One of the most effective way to make shared mobility options cost effective is to comfortably increase occupancy per vehicle footprint. This paper aims to evaluate a novel method of occupant seating to identify the maximum number of passengers a vehicle can accommodate without significant impact on occupant comfort. It is assumed that shared mobility options are used for a short duration of commute, and hence the comfort of the seat can be marginally compromised to increase the total number of occupants.
Technical Paper

Comparative Study of Olfactory Stimuli Influences on Hand-Eye Co-ordinated Tasks in Operators Fatigued by Circadian Effects

2016-04-05
2016-01-0141
Several studies in the field of hedonics using subjective responses to gauge the nature and influence of odors have attempted to explain the complex psychological and chemical processes. Work on the effect of odors in alleviating driver fatigue is limited. The potential to improve road safety through non-pharmacological means such as stimulating odors is the impetus behind this paper. This is especially relevant in developing countries today with burgeoning economies such as India. Longer road trips by commercial transport vehicles with increasingly fatigued drivers and risk of accidents are being fuelled by distant producer - consumer connections. This work describes a two stage comparative study on the effects of different odors typically obtainable in India. The stages involve administration of odorants orthonsally and retronasally after the onset of circadian fatigue in test subjects. This is followed by a small cognitive exercise to evaluate hand-eye coordination.
Technical Paper

Systematic Approach to Design Hand Controlled Parking Brake System for Passenger Car

2015-01-14
2015-26-0078
This paper is an attempt to compile a systematic approach which can be easily incorporated in the product development system used in the design and development of parking brake systems for passenger cars having rear drum brakes, which in turn can effectively reduce the lead time and give improved performance. The vehicle GVW, percentage gradient and maximum effort limits (as per IS 11852 - Part 3), tire and drum brake specifications were taken as front loading. This data is used for target setting of functional and engineering parameters, such as lever pull effort, lever ratio and angular travel of lever. Design calculations were performed to obtain theoretical values of critical parameters like lever effort and travel. The comparison between target and theoretical values give the initial confidence to the system engineer. Further, the outcome was taken to conceptualize the hard points of lever on vehicle for ergonomics.
Technical Paper

A Test Methodology for Vehicle Wind Noise Reduction and Acoustic Quality Improvement

2019-01-09
2019-26-0216
Aeroacoustics of vehicles is becoming an important design criterion as it directly affects passenger’s comfort. The wind noise at highway speeds (>80 KMPH) is a critical quality concern under normal and crosswind conditions and dominant factor in assessing acoustic comfort of the vehicle. Wind noise is caused by the vortex air flow around a vehicle body and air leakage through the sealing gaps of attached parts. This majorly contributes to high frequency noise (>250 Hz). Accurate identification and control of noise sources and leakage paths result in improved acoustic comfort of the vehicle. In this paper, aero-acoustic quality characteristics of validation prototype vehicle are studied. The major wind noise sources and leakage paths in the vehicle are identified through in-house blower set up in the semi anechoic room. The overall wind noise level and articulation index of vehicle at various speeds are determined through on- road measurements.
Technical Paper

Optimisation of Scooter Frame for Target Life on 2-Poster Rig with Virtual Simulation

2019-01-09
2019-26-0307
Vehicle frame evaluation at early stages of product development cycle is essential to reduce product turnaround time to market. In conventional approach of virtual validation it is required to evaluate the strength of the vehicle structure to account for the standard Service Load Analysis (SLA) loading conditions. But this paper describes on the strength analysis of scooter frame with derivation of critical static load cases. The critical load cases are extracted from the load-time history while the vehicle was simulated on durability virtual test rigs which is equivalent to proving ground tests. This methodology gives the better accuracy in prediction of stress levels and avoids the overdesign of components based on traditional validation technique. There is significant drop in stress levels using the critical load case approach as compared to conventional load case method.
Journal Article

Thermal Analysis of Clutch Assembly Using Co-Simulation Approach

2020-08-18
2020-28-0024
Automotive clutches are rotary components which transmits the torque from the engine to the transmission. During the engagement, due to the difference in speed of the shafts the friction lining initially slips until it makes a complete engagement. Enormous amount of heat is generated due to the slippage of the friction lining, leading to poor shift quality and clutch failure. Depending on the road & traffic conditions, and frequency of engagement and disengagement of the clutch, it generates transient heating and cooling cycles. Hill fade test with maximum GVW conditions being the worst case scenario for the clutch. A test was conducted to understand the performance of the clutch, in which clutch burning was observed. The clutch lining got blackened and burning smell was perceived. The friction coefficient drops sharply to a point until it cannot transmit the torque required to encounter the slope. This further worsen clutch slippage and lead to more severe temperature rise.
Technical Paper

Implementation of a Driver-in-the-Loop Methodology for Virtual Development of Semi-Active Dampers

2024-04-09
2024-01-2759
In today’s rapidly evolving automotive world, reduction of time to market has prime importance for a new product development. It is critical to have significant front-loading of the development activities to reduce development time while achieving best in class performance targets. Driver-in-the-loop (DIL) simulators have shown significant potential for achieving it, through real time subjective feedback at preliminary stages of the vehicle development. Recent advances in technology of driving simulators have enabled quite accurate representation steering and handling performance, also good prediction on primary ride and low frequency vibrations. In conventional damper development, the definition of the initial dampers tuning specifications typically requires a mule vehicle, or atleast, a comparable vehicle. However, this approach is associated with protracted iterations that consume substantial time and cost.
X