Refine Your Search

Topic

Search Results

Viewing 1 to 17 of 17
Technical Paper

Development of an all Speed Governed Diesel-CNG Dual Fuel Engine for Farm Applications

2021-09-22
2021-26-0101
This paper discusses the development of an all speed governed diesel-natural gas dual fuel engine for agricultural farm tractor. A 45 hp, 2.9 liters diesel-natural gas dual fuel engine with a novel closed loop secondary fuel injection system was developed. A frugal approach without any modification of the base mechanical diesel fuel injection system was followed. This approach helped to minimize the cost impact, while meeting performance and emissions at par with neat diesel operation. Additional cost on gas injection system is redeemed by cost savings on diesel fuel. The dual fuel technology developed by Mahindra & Mahindra Ltd., substitutes on an average approximately 40% of diesel with compressed natural gas, meeting the TREM III A emission norms for dual fuel while meeting all application requirements. The governing performance of the tractor was found to be superior than base diesel tractor.
Technical Paper

Virtual Simulation Method to Predict Farm Tractor Durability Load Cycles for Proving Ground Tests

2021-09-22
2021-26-0097
Agriculture machinery industries have always relied on conventional product development process such as laboratory tests, accelerated durability track tests and field tests. Now a days the competitive nature seen in industry concerns need to enhance product quality, time to market and development cost. Utilization of Computer Aided Engineering (CAE) methods not only provide solution but also could play key role in tractor development process. The objective is to assess the performance of virtual simulation model of mid segment farm tractor using Multibody System Model (MBS) for predicting the durability loads on virtual proving ground test tracks. Multibody simulation software MSC ADAMS is used to develop a virtual tractor model. Durability test tracks and simulation is carried out as per company testing standards. Data measurement is done using Wheel Force Transducer (WFT) to study front and rear spindle forces and moments to evaluate the virtual model performance.
Technical Paper

Development of Sensor Based Rotavator Unit For Display of Operational Parameters on Various Soil Conditions

2021-09-22
2021-26-0091
Rotavator is an active tillage implement for breaking the Soil and for the preparation of seed bed for cultivation. The Farmers are currently facing problem due to usage of sub optimal speed of Rotavator which results in more fuel consumption, takes more time for completion of operation. Also, the Current Rental models work on Tractor + Implement as rental combination and customer not able to rent Rotavator as a standalone implement due to non-availability of Tracking information such as hours of utilization on Rotavator. Farmers not able to maintain the service periodicity, if oil change not done in prescribed duration then it may result in improper maintenance and breakdown of the Rotavator. To overcome these problems a smart Rotavator developed consists of an electronic unit fitted on the Rotavator shaft to measure the speed of the shaft rotation and in turn convert to Rotavator speed and also able to convert into Hours of usage based on the starting and stopping of the rotavator.
Technical Paper

Improvement in the Brake Pedal Feel Comfort for Light Commercial Vehicles with Hydraulic Brake System

2021-09-22
2021-26-0515
Being a safety critical aggregate, every aspect of brake system is considered significant in vehicles operations. Along with optimum performance of brake system in terms of deceleration generation, brake pedal feel or brake feel is considered as one of the key elements while evaluating brake system of vehicles. There are many factors such as liner and drum condition, road surface, friction between linkages which impress the pedal feel. Out of these, in this paper we will be discussing the factors which influence the brake pedal feel in relation to the driver comfort and confidence building. Under optimum braking condition, brake operation must be completed with pedal effort not very less or not very high, brake pedal feel must be firm throughout the operation, in such a way that it will not create fatigue and at the same time it will give enough confidence to the driver while operating with acceptable travel.
Technical Paper

Methodology Development for Open Station Tractor OEL Noise Assessment in the Virtual Environment

2021-09-22
2021-26-0310
There is a higher demand for quieter tractors in the agri-industry, as the continued exposure to noise levels have disastrous effects on operator’s health. To meet the world-wide regulatory norms and to be the global market leader, its mandatory to develop the comfortable tractor which meets homologation requirements and customer expectations. Typically, Operator Ear Level (OEL) noise has been evaluated in the test, after First Proto has been made. This approach increases cost associated with product development due to late changes of modifications and testing trails causing delay in time-to-market aspect. Hence, there is a need to develop the methodology for Predicting tractor OEL noise in virtual environment and propose changes at early stage of product development. At first, full vehicle comprising of skid, sheet metals and Intake-exhaust systems modelled has been built using Finite Element (FE) Preprocessor.
Technical Paper

Fuel Efficiency Simulation Methodology for Commercial Vehicles: Approach to Generate Dynamic Duty Cycles for Simulation

2021-09-22
2021-26-0343
Fuel efficiency is critical aspect for commercial vehicles as fuel is major part of operational costs. To complicate scenario further, fuel efficiency testing, unlike in passenger cars is more time consuming and laborious. Thus, to save on development cost and save time in actual testing, simulations plays crucial role. Typically, actual vehicle speed and gear usage is captured using reference vehicle in desired route and used it for simulation of target vehicle. Limitation to this approach is captured duty cycle is specific to powertrain and driver behavior of reference vehicle. Any change in powertrain or vehicle resistance or driver of target vehicle will alter duty cycle and hence duty cycle of reference vehicle is no more valid for simulation assessment. This paper demonstrates approach which uses combination of tools to address this challenge. Simulation approach proposed here have three parts.
Technical Paper

Ladder Frame Concept Development through Parametric Beam Modelling

2021-09-22
2021-26-0416
Body-over-Frame is the primary type of construction used in SUVs, pick-ups, and other commercial vehicles in India. In this type of construction, the body, engine, suspensions etc. are mounted on the ladder frame. Since the frame acts as the skeleton of the vehicle, optimal design of frame at the concept stage of the vehicle program is critical for meeting all structural performance targets. Frontloading of these targets aids in architecture development and reduces future design modifications. The natural frequency response from the frame directly affects the NVH performance of the vehicle. This paper focuses on frontloading the natural frequency targets by performing concept-level simulations on the ladder frame even before creation of 3D concept data. A parametric beam model is created based on the reference vehicles. The beam model has been validated with correlation of more than 85% compared with CAE and physical testing outputs of existing vehicles.
Technical Paper

Agricultural Tractor Engine Noise Prediction and Optimization through Test and Simulation Techniques

2021-09-22
2021-26-0277
Engine radiated noise has complex behavior as engine assembly consist different components, varying dynamic forces with wide range of speed. For open station tractor, engine noise is major contributor and hence needs to be optimized for regulatory norms as well customer comfort. The awareness about NVH comfort in domestic market as well as export market is increasing as customer have become more demanding. This forces OEM’s to put serious efforts to ensure the OEL noise / Engine noise is at acceptable levels. Identifying the optimized countermeasures to reduce the engine noise during the early design phase has a greater impact in reducing product development time and cost. This paper describes about a process that has been established for evaluating engine radiated noise and to improve the overall NVH performance.
Technical Paper

Derivation of Extreme Static Durability Load Cases for FEA Based Vehicle Strength Evaluation

2011-09-13
2011-01-2174
Validation of vehicle structure by use of finite element analysis is at the core of reduction of product development time. In the early phase of validation it is required to evaluate the strength of the vehicle structure to account for the loading during physical validation and service loading. In service the vehicle is subjected to variable loads. These act upon the components that originate from road roughness, maneuvers and power train loads. All systems in the vehicle represent more or less complicated elastic structures subjected to time varying loads. A time domain dynamic assessment of the vehicle structure is time consuming and expensive. Also in the early phase of design wherein several design iterations need to be carried out for design validation, it is practically impossible to conduct a dynamic analysis and fatigue life assessment. Extreme static load cases are traditionally being used for this process.
Technical Paper

Model-Based Simulation Approach to Reduce Jerk Issue in Power Shuttle Transmission (PST) Tractor

2022-08-30
2022-01-1119
Nowadays, tractors are frequently used with front-end loaders, dozers and backhoes to cater to various non-agricultural and construction application needs. These applications require frequent shifting of gears due to the constant need for a tractor's forward/reverse direction of motion. Hence, the tractors are fitted with a power shuttle transmission (PST) to cater this need. Power-shuttle transmission (PST) development is a design process that incorporates multiple disciplines such as mechanical, hydraulics, controls and electronics. This paper presents a simulation-based approach to model the power shuttle transmission of the tractor. Firstly, individual components of PST are modelled in detail and then integrated with the complete tractor model. For this, GT-Suite has been used as a simulation platform.
Technical Paper

SCV Chassis Performance Optimization Through Parametric Beam Modelling & Simulation

2021-10-01
2021-28-0183
In automotive product development, design and development of the chassis plays an important role since all the internal and external loads pass through the vehicle chassis. Durability, NVH, Dynamics as well as overall vehicle performance is dependent on the chassis structure. Even though passenger vehicle chassis has a ladder frame or a monocoque construction, small commercial vehicle chassis is a hybrid chassis with the cabin welded to the ladder frame. As mileage is critical for sale of SCVs, making a light-weight chassis is also important. This creates a trade-off between the performance and weight which needs to be optimized. In this study, a parametric beam model of the ladder frame & the cabin of the vehicle is created in COMSOL Multiphysics. The structure has been parameterized into the long member & crossmember geometry & sections. The model calculates the first 12 natural frequencies, global stiffness, and weight.
Technical Paper

Bringing Field to Lab in Tractor Evaluation Through Three Poster Test System and Statistical Tools

2005-11-01
2005-01-3539
The emerging business imperative of frequent new product introduction in market throws up challenge to shorten testing and evaluation time. Advanced test facilities and statistical tools have a greater role in reducing the evaluation cycle time. Considering limitations of field testing, a need was felt to simulate field condition in the laboratory i.e., ‘Bringing field to lab’. In this paper, an effort is made to explain the concept of ‘Bringing field to lab’ and the approach towards accomplishing it. The methodology developed for assessing effectiveness of laboratory tests i.e., ‘Power of Lab’ is shared. Various means of accelerating the tests and verifying field to lab correlation are explained. In quest to pursue the vision of ‘Bringing field to lab’ program, a new test facility has been developed to evaluate tractor i.e., Three-Poster Test System. Features of this test system, along with it’s role in ‘Bringing field to lab’, are shared along with the test results obtained.
Technical Paper

Offset Driveline for Tractors

2016-02-01
2016-28-0128
Tractors with 4WD drive perform better in slick, off road or muddy conditions (especially in Agricultural and constructional Field applications) where torque is required at all the wheels. The purpose of four wheel drive or all-wheel drive is to transmit power to all the wheels. In case of 2WD the power from engine is transferred to the rear wheels of a tractor through transmission. But in case of 4 WD tractors and construction equipment, power from engine is transferred to the front wheels through drop box and the driveline (propeller shaft). This Paper describes the need of an offset driveline where there is an offset between the Drop box output shaft center and the front axle input shaft center. This offset is the result of zero keel angle of the tractor. In order to maintain zero keel angle and transfer power to front wheels, an offset driveline with three shafts has been design &developed.
Technical Paper

Optimizing OSRVM Package for Maximizing In-vehicle Visibility

2015-09-29
2015-01-2837
Overall in-vehicle visibility is considered as a key safety parameter essentially mandated due to the increasing traffic scenario as seen in developing countries. Driver side bottom corner visibility is one such parameter primarily defined by A-pillar bottom and outside rear-view mirror (OSRVM). While defining the OSRVM package requirements such as size, position and regulatory aspects, it is also vital to consider other influencing parameters such as position of pillars, waist-line height, and Instrument panel which affect the in-vehicle visibility. This study explains the various package considerations, methods to optimize OSRVM position, shape and housing design in order to maximize the in-vehicle visibility considering the road and traffic conditions. A detailed study on in-vehicle visibility impacted by OSRVM packaging explained and had been verified for the results.
Technical Paper

Prediction of Tractor CG by Considering the Safety Devices at Concept Level

2020-09-25
2020-28-0476
Tractor weight transfer is the most common farm-related cause of fatalities nowadays. As in India it is getting mandatory for all safety devices across all HP ranges. Considering any changes in the weight from an attachment such as Rops, PTO device, tow hook and draw bar etc. can shift the center of gravity towards the weight. center of gravity is higher on a tractor because the tractor needs to be higher in order to complete operations over crops and rough terrain. Terrains, attachments, weights, and speeds can change the tractor’s resistance to turning over. This center of gravity placement disperses the weight so that 30 percent of the tractor’s weight is on the front axle and 70 percent is on the rear axle for two-wheel drive propelled tractors and it must remain within the tractor’s stability baseline for the tractor to remain in an upright position.
Technical Paper

Comparative Study of Olfactory Stimuli Influences on Hand-Eye Co-ordinated Tasks in Operators Fatigued by Circadian Effects

2016-04-05
2016-01-0141
Several studies in the field of hedonics using subjective responses to gauge the nature and influence of odors have attempted to explain the complex psychological and chemical processes. Work on the effect of odors in alleviating driver fatigue is limited. The potential to improve road safety through non-pharmacological means such as stimulating odors is the impetus behind this paper. This is especially relevant in developing countries today with burgeoning economies such as India. Longer road trips by commercial transport vehicles with increasingly fatigued drivers and risk of accidents are being fuelled by distant producer - consumer connections. This work describes a two stage comparative study on the effects of different odors typically obtainable in India. The stages involve administration of odorants orthonsally and retronasally after the onset of circadian fatigue in test subjects. This is followed by a small cognitive exercise to evaluate hand-eye coordination.
Technical Paper

Importance of Metallurgical Properties to Prevent Shaft Failures in Off-road Vehicle Validation

2023-05-25
2023-28-1319
Globally, automotive sector is moving towards improving off-road performance, durability and safety. Need of off-road performance leads to unpredictable overload to powertrain system due to unpaved roads and abuse driving conditions. Generally, shafts and gears in the transmission system are designed to meet infinite life. But, under abuse condition, it undergo overloads in both torsional and bending modes and finally, weak part in the entire system tend to fail first. This paper represents the failure analysis of one such an incident happened in output shaft under abuse test condition. Failure mode was confirmed as torsional overload using Stereo microscope and SEM. Application stress and shear strength of the shaft was calculated and found overstressing was the cause of failure. To avoid recurrence of breakage, improvement options were identified and subjected to static torsional test to quantify the improvement level.
X