Refine Your Search

Topic

Search Results

Journal Article

Influence of Low Viscosity Lubricating Oils on Fuel Economy and Durability of Passenger Car Diesel Engine

2012-01-09
2012-28-0010
Continuously rising fuel prices and global concern on climate change have resulted in a need to deliver vehicles with increased fuel economy. This has to be achieved without compromising on performance, durability and cost. Passenger car manufacturers are looking at various ways to maximize fuel economy. Major part of fuel saving can be tapped from engine itself. This can be done by activities on engine as below: Improving overall combustion efficiency and hence BSFC Efficient thermal management. Weight reduction of engine parts or complete downsizing Hybridization. Reducing engine losses i.e. parasitic losses from auxiliaries and frictional losses. This paper is focused on the reduction of engine frictional losses (FMEP) through the use of low viscosity lubrication oils. Various factors in lubrication oil contribute to friction. Experimental approach to quantifying the effect of different parameters of lubrication oil on total engine friction is presented.
Technical Paper

Experimental Evaluation of Performance of Effective Upper Belt Anchorage (EUBA), Lower Belt Anchorage (LBA) and Floor Deformation under Different Test Configuration as per ECE R14

2008-04-14
2008-01-0185
Seats, seat belts, seat belt anchorages, etc., are safety critical items for the passenger in case of sudden acceleration/deceleration and accidents. Seat belts have become mandatory fitments on front seats of M and N categories of vehicles from April 1994 in India[1]. Seat belt without a proper anchorage does not serve any purpose. Hence, seat belt anchorage testing became mandatory in India in year 2002. In real accident situation seat belts come in to action within few ms and complete phenomenon is finished in 150 ms. However the regulatory requirements prescribed in AIS: 015, ECE R14 and 76/115/EEC specify the application of loading to be achieved as rapidly [2].A number of seat belt anchorage tests were conducted on BIW and laboratory model setups. This paper highlights the effect of loading rate, and loading method on the load bearing capacity of the seat belt anchorages, floor area and seat structures.
Technical Paper

Implementation of Interior Fitting Regulation (ECE R21) in India: Common Failures and Countermeasures in Instrument Panel Development

2009-04-20
2009-01-0053
Head form impact tests are carried out on instrument panel as part of meeting the requirements of the interior fitting regulation ECE R21. India adopted the ECE R21 regulation and interior fitting impact tests became mandatory in April 2005 for models manufactured from April 2005 and April 2006 for models being manufactured before April 2005. Energy dissipation testing of vehicle’s interior fitments is done at various selected and defined locations. With the implementation of interior fitting regulation in India, it is mandatory that every manufacturer tests and certifies their product to comply with the energy dissipation standards as defined in the regulation ECE R21. Extensive interior fitting test program is carried out for various models ranging from MY1993 to MY2003.During the development testing following types of failures were observed: Occurrence of surface cracks due to sharp edges and component dislocation.
Technical Paper

Development of Bi-fuel CNG Engine based passenger vehicle and Field Trials study in Indian condition

2009-12-13
2009-28-0019
Compressed natural gas (CNG) is being explored as a sustainable renewable fuel for vehicles in India due to mounting foreign exchange expenditure to import crude petroleum. Impending emissions regulations for diesel engines, specifically exhaust particulate emissions have caused engine manufacturers to once again examine the potential of alternative fuels. Much interest has centered on compressed natural gas (CNG) due to its potential for low particulate and hydrocarbon based emissions. Natural gas engine development projects have tended toward the use of current gasoline engine technology (stoichiometric mixtures, closed-loop fuel control and exhaust catalysts). Significant amount of research and development work is being undertaken in India to investigate various aspects of CNG utilization in different types of engines. This paper discusses about the development of the bi-fuel CNG engine for passenger vehicular application.
Technical Paper

Effect of PVC Skin and Its Properties on Automotive Door Trim Inserts

2017-03-28
2017-01-0492
Plastic plays a major role in automotive interiors. Till now most of the Indian automobile industries are using plastics mainly to cover the bare sheet metal panels and to reduce the weight of the vehicle along with safety concerns. Eventually Indian customer requirement is changing towards luxury vehicles. Premium look and luxury feel of the vehicle plays an equal role along with fuel economy and cost. Interior cabin is the place where aesthetics and comfort is the key to attract customers. Door Trims are one of the major areas of interiors where one can be able to provide premium feeling to the customer by giving PVC skin and decorative inserts. This paper deals with different types of PVC skins and its properties based on process constraints, complexity of the inserts. Door trim inserts can be manufactured by various methods like adhesive pasting, thermo-compression molding and low pressure injection molding process etc.
Technical Paper

Determining the Parameters of Feeling for a Mechanism of Seat Adjustment

2017-03-28
2017-01-1392
The seating system is an inseparable part of any automobile. Its main function is not only to provide a space to the user for driving but also to provide support, comfort and help to ergonomically access the various features and necessary operations of the vehicle. For comfort and accessibility, seats are provided with various mechanisms for adjustments in different directions. Typical mechanisms used for seating adjustment include seatback recliners, lifters (height adjusters), longitudinal adjusters, lumber support, rear seat folding mechanism etc. These mechanisms can be power operated or manual based on vehicle/market requirements. For manual mechanisms, the occupant adjusts the position of seat by operating the mechanism with his/her hand. Often comfort to the occupant during operation is limited to the operating effort of the mechanism. However, as will be shown through this study, operating effort is only one of the parameters which provide overall comfort feeling.
Technical Paper

Study and proposals for improving static comfort in automotive seating

2017-03-28
2017-01-1389
Automotive seating is designed by considering safety, comfort and aesthetics for the occupants. Seating comfort is one of the important parameters for the occupant for enhancing the overall experience in a vehicle. Seating comfort is categorized as static (or showroom) comfort and dynamic comfort. The requirements for achieving static and dynamic comfort can sometimes differ and may require design parameters such as PU hardness to be set in opposite directions. This paper presents a case wherein a base seat with good dynamic comfort is taken and an analysis is done to improve upon the static comfort, without compromising on the dynamic comfort. The study focuses on improving the initial comfort by considering various options for seating upholstery.
Technical Paper

Investigation on the Effect of Coolant Temperature on the Performance and Emissions of Naturally Aspirated Gasoline Engine

2011-01-19
2011-26-0089
Downsizing of engines is becoming more popular as manufacturers toil for increased fuel economy. Due to the downsizing of engines, Brake Mean Effective Pressure (BMEP) tends to increase, which in turn increases the heat release from engine. This necessitates the need for optimizing cooling system in order to get higher engine output and lower emissions to comply with stringent emission norms. In earlier engines, thermo-siphon principle was used with water as the coolant. This has been replaced in modern engines with pressurized cooling system with coolants like ethylene glycol mix. Along with the conventional objective of increased material durability with the optimized engine cooling system, it has been found that there is an improvement in the engine output due to increased charging efficiency. This paper describes the effect of engine coolant temperature on performance, emission and efficiency of a three-cylinder naturally aspirated spark ignited engine.
Technical Paper

Effectiveness of Vehicle Cool Glove Box and Analysis of Parameters Effecting Cool Glove Box Performance

2018-04-03
2018-01-0069
People needs and expectations from vehicles have changed. One of the need is to maintain the temperature of beverages without use of any external source. Cool Glove Box is a feature in which cool air from automotive HVAC system is used to maintain the temperature of the beverages in passenger vehicles. There are various parameters which play a vital role in maintaining the temperature of the beverages and to reduce the rise in temperature. The effectiveness of cool Glove Box is tested in vehicle in an environmental controlled chamber and impact of various parameters which affects the performance are studied. The Glove Box with cooling feature located on bottom of instrumental panel with good sealing and having high air flow directly from HVAC unit will have good cooling performance.
Technical Paper

Passenger under Foot Structure and its Efficacy:-Analytical & Experimental Evaluation

2018-04-03
2018-01-0154
Increasing customer expectations of comfort and convenience inside the vehicle has resulted in OEMs working on various solutions to improve interior ergonomics and overall layout. One of the key areas of focus has been the ease of ingress into and egress from the vehicle. But with increased sharing of platforms in OEM Model Lineup, due to obvious benefits like cost and common tooling/parts, it is very difficult to achieve improved results in different vehicles (like Hatchback, Notchback, SUV etc.) but with same underpinnings. One of the commonly used approaches is provision of false flooring via floor pads for front / Rear Passengers for easy Egress-Ingress. Floor Pads are used to maintain similar comfort levels across different vehicles sharing common platform and to maintain similar relationship between Foot resting positions and Side Sill.
Technical Paper

Research to Explore Different Failures and their Countermeasures in Automotive Seating Fabrics

2013-01-09
2013-26-0076
In automotive seating system, seat upholstery quality has an important role in defining the overall quality and aesthetics of vehicle interiors. Technical textiles for seating system used in automotive applications are generally categorized into woven or knitted type. An automotive textile material is a composite material made up of three layers; base fabric (top layer), foam (middle layer) and scrim (bottom layer) as shown in Fig. 1. There are many challenges to be overcome during development of fabric e.g. mechanical, physical and aesthetic issues have an impact on overall seat quality, appearance and performance. These issues get highlighted during testing, which takes place during development stage of fabric. The concerns mentioned above are found in automotive textiles in both woven and knitted types of fabrics sourced from different manufacturing set-ups. This paper focuses on identification of problems during testing, followed by root cause analysis.
Technical Paper

Development of Jig to Determine Center of Gravity for Vehicle Seats (Unsymmetrical Three Dimensional Bodies) for Automotive Regulatory Test

2013-01-09
2013-26-0059
This article brings a practical analysis for determination of gravity center in unsymmetrical three dimensional bodies practically and graphically. The gravitational center of an object is the point from which if suspended, the object remains stable at all times, this is also called as center of mass of the object, or the theoretical point at which the entire weight of the object is assumed to be concentrated. In certain tests, the Center of Gravity (CG) of the Seat is required to be known, for load application. The CG is the point at which a SEAT would balance if it were possible to suspend it at that point. This paper deals with use of applied engineering and theoretical calculations to ascertain the CG of First and Second Row seats (individual and bench type). In this case the center of gravity location is expressed in units of length along each of three axes (X, Y and Z). Load balance equation is used to calculate the CG of the seat.
Technical Paper

Passenger Car Front Air - Dam Design Based on Aerodynamic and Fuel Economy Simulations

2013-01-09
2013-26-0063
Computational Fluid Dynamics (CFD) is used extensively in the optimization of modern passenger car to meet the ever growing need of higher fuel economy, better engine and underbody cooling. One of the way to achieve better fuel economy is to reduce the vehicle overall resistance to flow, know as drag. Vehicle drag is a complex phenomenon governed by vehicle styling, component shape, layout and driving velocity and road conditions. To reduce the drag a lot of aero-parts are used these days such as air-dam, skirts, spoiler, undercover, dams etc. However the design of these aero-parts must be optimized to get the desired result as their addition alone does not guarantee improvement in performance. This paper aims at studying the effect of air-dam height and position on vehicle aerodynamics. Also the effect of air-dam addition was verified using fuel economy simulations.
Technical Paper

Optimal Torque Handling in Hybrid Powertrain for Fuel Economy Improvement

2013-01-09
2013-26-0068
In this work, a parallel full Hybrid Electric Vehicle (HEV) was optimized to further lower its carbon footprint without opting for any additional hardware change. The study was focused to first recognize the system efficiency of the HEV and identify its low efficiency points over the MIDC. Thereafter, different functions of the HEV were studied for their individual and cumulative contribution in the fuel economy improvement over the base non-hybrid vehicle. This, along with the low system efficiency points helped in identifying the potential areas for improvement in fuel economy. With changes in calibration and control strategies resulting in an optimal torque handling between the E-machine and the ICE, it was established through simulation and subsequent experiments conducted on chassis dynamometer, that the fuel economy of the HEV tested can be improved with the performance remaining unchanged and emissions meeting regulatory requirements.
Technical Paper

A Study on the Idle Combustion Stability of a CNG Powered Naturally Aspirated Engine

2013-01-09
2013-26-0003
In view of rising oil prices and concern for the greenhouse gas emissions, the need for greener and efficient engines is increasing. Thus, automobile manufacturers are trying to improve the performance and efficiency of the engine while keeping compliance with the stringent emission norms. CNG, with its high H/C ratio, makes it a clean fuel by significantly reducing the emission of green-house gas carbon-dioxide. CNG, being cheap compared to other conventional fuels, is an added advantage and hence is gaining popularity. Along with improvement in the part load and full load efficiency, Engine manufactures are looking to lower the idle speed for better fuel economy. Lowering the idle speed has to be optimized as, it reduces the combustion stability of the engine which in turn increases the variation of Indicated Mean Effective Pressure (IMEP) resulting in high structural vibration from the engine and to vehicle body.
Technical Paper

Vehicular Cabin Noise Source Identification and Optimization Using Beamforming and Acoustical Holography

2014-04-01
2014-01-0004
The automobile market is witnessing a different trend altogether - the trend of shifting preference from powerful to fuel efficient machines. Certain factors like growing prices of fuel, struggling global economy, environmental sensitiveness and affordability have pushed the focus on smaller, efficient and cleaner automobiles. To meet such requirements, the automobile manufacturers, are going stringent on vehicle weights. Using electric and hybrid power-plants are other options to meet higher fuel efficiency and emission requirements but significant cost of these technologies have kept their growth restricted to only few makers and to only few regions of the globe. Optimizing the vehicle weight is a more attractive option for makers as it promises lesser time to market, is low on investment and allows use of existing platforms.
Technical Paper

Application and Development Challenges of Dynamic Damper in Cabin Booming Noise Elimination

2014-04-01
2014-01-0013
Automotive OEMs quest for vehicle body light weighting, increase in Fuel efficiency along with significant cut in the emissions pose significant challenges. Apart from the effect on vehicle handling, the reduction of vehicle weight also results in additional general requirements for acoustic measures as it is an important aspect that contributes to the comfort and the sound quality image of the vehicle, thus posing a unique challenge to body designers and NVH experts. Due to these conflicting objectives, accurate identification along with knowledge of the transfer paths of vibrations and noise in the vehicle is needed to facilitate measures for booming noise dampening and vehicle structure vibration amplitude. This paper focuses on the application of a unique design and development of vehicle body structure anti-vibration dynamic damper (DD), unique in its aspect in controlling booming noise generated at a specific RPM range.
Technical Paper

CAE Driven Improvement in Frontal Offset Crash Performance of a Compact Car

2014-04-01
2014-01-0375
Offset crash compliance of a compact car is severe due to the compact layout and stringent fuel economy, weight and cost targets. Scope of the current work is to improve the structural crash performance of a compact car through CAE, in order to meet the offset frontal crash requirements as per ECE R94 Regulation. The project has been classified in three main phases. First phase includes the evaluation of baseline vehicle in CAE. In order to ensure the accuracy of CAE prediction, a methodology for predicting Spotweld rupture was implemented. Using this methodology, it is possible to find out the location and time of spotweld rupture as well as propagation of spotweld rupture in CAE. CAE results of spotweld rupture prediction showed good agreement with the physical test. In second phase, design iterations were carried out in order to meet the performance targets of structural deformation.
Technical Paper

Supervisory Control Strategy for Mild Hybrid System - A Model Based Approach

2013-04-08
2013-01-0503
In this paper, a mild hybrid system is studied for Indian drive conditions. The study is focused to first come up with detailed component sizing through simulation. Different features of mild hybrid system are studied for their individual and cumulative contribution in the fuel economy improvement over the base non-hybrid vehicle. Model based development approach has been employed to develop a supervisory control strategy for such a system. Model based design saves time and cost as it gives flexibility to the control engineer to validate the control design at an early stage of development. The supervisory control strategy is first tested in a simulated environment and then, on a vehicle. To prove the system function, a full hybrid vehicle is experimented as a mild hybrid configuration. Experiments are conducted on the test vehicle over MIDC (certification cycle) to understand the impact of mild hybridization on fuel economy and tail pipe emissions
Technical Paper

Design Optimization of FEAD System to Meet Durability Target in a New Vehicle Development Program

2014-04-01
2014-01-1636
Front end accessory drive (FEAD) system explained in this paper is a sub-system of an engine. In FEAD system, a poly-v belt is used to drive the alternator and water pump by transmitting power from crankshaft pulley. In a new vehicle development program, durability targets of FEAD system are based on required life of poly-v belt, its static tension readjustment interval and replacement frequency. To meet these durability targets following methodology is applied in design stage:- 1 Simulation of FEAD system to calculate the theoretical life of belt 2 Part level testing of belt as per SAE J2432 These methods give sufficient information on belt durability. However in actual usage, certain failures are prone to happen and enormous difference is always observed between theoretical and actual life of belt. This paper describes the traditional stair-case approach followed to optimize the FEAD system based on the outcome of durability tests.
X