Refine Your Search

Topic

Search Results

Viewing 1 to 15 of 15
Journal Article

Measurement of Regulated and Unregulated Exhaust Emissions from Snowmobiles in the 2009 SAE Clean Snowmobile Challenge

2010-09-28
2010-32-0126
Alternative and renewable fuels show tremendous promise for addressing concerns of energy security, energy supply, and CO₂ emissions. However, the new fuels have the potential to produce non-regulated exhaust components that may be as detrimental or worse, than currently regulated emissions components. For the 2009 SAE Clean Snowmobile Challenge (CSC), a commercially available Fourier Transform Infrared (FTIR) spectrometer was used to sample raw exhaust from eight student teams' snowmobiles for comparative analysis with a conventional emissions bench. The levels of CO₂, CO, NO , O₂, and THC were compared for the five operating modes, which included both gasoline- and diesel-powered snowmobiles. The fuel was either an ethanol blend for spark-ignition engines or a biodiesel for compression-ignition engines. Final emissions result scores varied by less than 2% between the conventional emissions bench and the FTIR.
Journal Article

Influence of Injector Location on Part-Load Performance Characteristics of Natural Gas Direct-Injection in a Spark Ignition Engine

2016-10-17
2016-01-2364
Interest in natural gas as an alternative fuel source to petroleum fuels for light-duty vehicle applications has increased due to its domestic availability and stable price compared to gasoline. With its higher hydrogen-to-carbon ratio, natural gas has the potential to reduce engine out carbon dioxide emissions, which has shown to be a strong greenhouse gas contributor. For part-load conditions, the lower flame speeds of natural gas can lead to an increased duration in the inflammation process with traditional port-injection. Direct-injection of natural gas can increase in-cylinder turbulence and has the potential to reduce problems typically associated with port-injection of natural gas, such as lower flame speeds and poor dilution tolerance. A study was designed and executed to investigate the effects of direct-injection of natural gas at part-load conditions.
Journal Article

Driving Pattern Recognition for Adaptive Hybrid Vehicle Control

2012-04-16
2012-01-0742
The vehicle driving cycles affect the performance of a hybrid vehicle control strategy, as a result, the overall performance of the vehicle, such as fuel consumption and emission. By identifying the driving cycles of a vehicle, the control system is able to dynamically change the control strategy (or parameters) to the best one to adapt to the changes of vehicle driving patterns. This paper studies the supervised driving cycle recognition using pattern recognition approach. With pattern recognition method, a driving cycle is represented by feature vectors that are formed by a set of parameters to which the driving cycle is sensitive. The on-line driving pattern recognition is achieved by calculating the feature vectors and classifying these feature vectors to one of the driving patterns in the reference database. To establish reference driving cycle database, the representative feature vectors for four federal driving cycles are generated using feature extraction method.
Technical Paper

Efficiency and Emissions Mapping of a Light Duty Diesel - Natural Gas Engine Operating in Conventional Diesel and RCCI Modes

2016-10-17
2016-01-2309
Reactivity Controlled Compression Ignition (RCCI) is a promising dual-fuel Low Temperature Combustion (LTC) mode with significant potential for reducing NOx and particulate emissions while improving or maintaining thermal efficiency compared to Conventional Diesel Combustion (CDC) engines. The large reactivity difference between diesel and Natural Gas (NG) fuels provides a strong control variable for phasing and shaping combustion heat release. In this work, the Brake Thermal Efficiencies (BTE), emissions and combustion characteristics of a light duty 1.9L, four-cylinder diesel engine operating in single fuel diesel mode and in Diesel-NG RCCI mode are investigated and compared. The engine was operated at speeds of 1300 to 2500 RPM and loads of 1 to 7 bar BMEP. Operation was limited to 10 bar/deg Maximum Pressure Rise Rate (MPRR) and 6% Coefficient of Variation (COV) of IMEP.
Technical Paper

Fuel Economy Benefits of Integrating a Multi-Mode Low Temperature Combustion (LTC) Engine in a Series Extended Range Electric Powertrain

2016-10-17
2016-01-2361
Low Temperature Combustion (LTC) engines are promising to improve powertrain fuel economy and reduce NOx and soot emissions by improving the in-cylinder combustion process. However, the narrow operating range of LTC engines limits the use of these engines in conventional powertrains. Extended range electric vehicles (EREVs), by decoupling the engine from the drivetrain, allows the engine to operate in a limited operating range; thus, EREVs offer an ideal platform for realizing the advantages of LTC engines. In this study, the global optimum fuel economy improvement of an experimentally developed 2-liter multi-mode LTC engine in a series EREV is investigated. The engine operation modes include Homogeneous-Charge Compression Ignition (HCCI), Reactivity Controlled Compression Ignition (RCCI), and conventional Spark Ignition (SI).
Technical Paper

Proof-of-Concept Numerical Study for NOx Reduction in Diesel Engines Using Enriched Nitrogen and Enriched Oxygen

2016-09-27
2016-01-8082
The medium and heavy duty vehicle industry has fostered an increase in emissions research with the aim of reducing NOx while maintaining power output and thermal efficiency. This research describes a proof-of-concept numerical study conducted on a Caterpillar single-cylinder research engine. The target of the study is to reduce NOx by taking a unique approach to combustion air handling and utilizing enriched nitrogen and oxygen gas streams provided by Air Separation Membranes. A large set of test cases were initially carried out for closed-cycle situations to determine an appropriate set of operating conditions that are conducive for NOx reduction and gas diffusion properties. Several parameters - experimental and numerical, were considered. Experimental aspects, such as engine RPM, fuel injection pressure, start of injection, spray inclusion angle, and valve timings were considered for the parametric study.
Technical Paper

Investigation of Diesel Liquid Spray Penetration Fluctuations under Vaporizing Conditions

2012-04-16
2012-01-0455
Diesel combustion and emissions formation is largely spray and mixing controlled and hence understanding spray parameters, specifically vaporization, is key to determine the impact of fuel injector operation and nozzle design on combustion and emissions. In this study, an eight-hole common rail piezoelectric injector was tested in an optically accessible constant volume combustion vessel at charge gas conditions typical of full load boosted engine operation. Liquid penetration of the eight sprays was determined via processing of images acquired from Mie back scattering under vaporizing conditions by injecting into a charge gas at elevated temperature with 0% oxygen. Conditions investigated included a charge temperature sweep of 800 to 1300 K and injection pressure sweep of 1034 to 2000 bar at a constant charge density of 34.8 kg/m₃.
Technical Paper

Combustion Robustness Characterization of Gasoline and E85 for Startability in a Direct Injection Spark-Ignition Engine

2012-04-16
2012-01-1073
An experimental study and analysis was conducted to investigate cold start robustness of an ethanol flex-fuel spark ignition (SI) direct injection (DI) engine. Cold starting with ethanol fuel blends is a known challenge due to the fuel characteristics. The program was performed to investigate strategies to reduce the enrichment requirements for the first firing cycle during a cold start. In this study a single-cylinder SIDI research engine was used to investigate gasoline and E85 fuels which were tested with three piston configurations (CR11F, CR11B, CR15.5B - which includes changes in compression ratio and piston geometry), at three intake cam positions (95, 110, 125 °aTDC), and two fuel pressures (low: 0.4 MPa and high: 3.0 MPa) at 25°C±1°C engine and air temperature, for the first cycle of an engine start.
Technical Paper

Development of an Improved Residuals Estimation Model for Dual Independent Cam Phasing Spark-Ignition Engines

2013-04-08
2013-01-0312
Estimating internal residual during engine operation is essential to robust control during startup, steady state, and transient operation. Internal residual has a significant effect on combustion flame propagation, combustion stability and emissions. Accurate residual estimate also provides a better foundation for optimizing open loop fuel control during startup, while providing a basis for reducing emissions during closed loop control. In this paper we develop an improved model to estimate residual gas fraction by means of isolation and characterization of the physical processes in the gas exchange. Examining existing residuals model as the base, we address their deficiencies making changes to appropriate terms to the model. Existing models do not work well under wide angle dual independent cam phasing. The improved residual estimation model is not limited by the initial data set used for its calibration and does not need cylinder pressure data.
Technical Paper

Numerical Study on Emission Characteristics of High-Pressure Dimethyl Ether (DME) under Different Engine Ambient Conditions

2013-04-08
2013-01-0319
Particular matter (PM) has been greatly concerned over the recent decades due to the constantly increasing restriction on its effect on environmental aspect. Oxygenated fuel such as dimethyl ether (DME) has been known to have beneficial impact on diesel engine emissions in terms of zero soot formation. In current study, under several ambient conditions including surrounding gas temperature and oxygen percentages, soot and emission formation of DME spray is investigated to provide a comparison with other diesel surrogate (n-heptane) and JP-8 surrogate fuels. One important work is to develop a number of chemical kinetic mechanisms with soot chemistry including the growth of polycyclic aromatic hydrocarbon (PAH) and nitro oxides (NOx) formation. Using the developing detailed mechanisms, several numerical approaches were introduced to provide an integrated picture of emission formations.
Technical Paper

The Effects of Fuels on Diesel Oxidation Catalyst Performance and the Physical, Chemical, and Biological Character of Diesel Particulate Emissions

1981-10-01
811192
The effect of fuel changes on diesel oxidation catalyst performance was studied by comparing the physical, chemical and biological character of the particulate emissions using three different fuels. Baseline (uncatalyzed) emissions were also compared for these same fuels. The fuels used for this study were: a typical No. 2 fuel, a No. 1 fuel, and a shale oil-derived diesel fuel. Comparisons of NOX, NO, NO2, HC and particulate mass emissions using each fuel were made using selected modes from the EPA 13 mode cycle. Changes in the chemical and biological character of the soluble organic fraction (SOF) were also studied. Fuel properties, most notably fuel sulfur content, were found to affect the performance of the oxidation catalyst used. Fuel sulfur content should be kept as low as possible if catalytic converters are used on diesel powered equipment.
Technical Paper

Engine Modifications for MTU’s 1982 Super Mileage Vehicle

1982-02-01
821091
The Super Mileage Competition is an annual event sponsored by the Western Michigan Section of the Society of Automotive Engineers, the Eaton Corporation and the Briggs and Stratton Corporation. The purpose of this competition is to give engineering students “hands on” experience with the design and manufacture of a competitive vehicle and to increase public awareness of fuel efficient vehicles. This paper describes the engine modifications, testing procedure and results of these modifications made to the super mileage vehicle entered by Michigan Technological University in the 1982 Super Mileage Competition. These modifications resulted in greater than a twenty-five percent increase in specific fuel consumption over the stock engine. With this modified engine, the completed vehicle achieved over 440 miles per gallon in the final competition.
Technical Paper

Integration of an ORC Waste Heat Recovery with Electrification and Supercharging through Use of a Planetary Gear System for a Class 8 Tractor Application

2019-04-02
2019-01-0229
A novel approach to the Integration of Turbocompounding/WHR, Electrification and Supercharging technologies (ITES) to reduce fuel consumption in a medium heavy-duty diesel engine was previously published by FEV. This paper describes a modified approach to ITES to reduce fuel consumption on a heavy-duty diesel engine applied in a Class 8 tractor. The original implementation of the ITES incorporated a turbocompound turbine as the means for waste heat recovery. In this new approach, the turbocompound unit connected to the sun gear of the planetary gear set has been replaced by an organic Rankine cycle (ORC) turbine expander. The secondary compressor and the electric motor-generator are connected to the ring gear and the carrier gear respectively. The ITES unit is equipped with dry clutch and band brake allowing flexibility in mechanical and electrical integration of the ORC expander, secondary compressor and electric motor-generator to the engine.
Technical Paper

Sequential Model for Residual Affected HCCI with Variable Valve Timing

2015-04-14
2015-01-1748
In this study, the effects of Variable Valve Timing (VVT) on the performance of a Homogeneous Charge Compression Ignition (HCCI) engine are analyzed by developing a computationally efficient modeling approach for the HCCI engine cycle. A full engine cycle model called Sequential Model for Residual affected HCCI (SMRH) is developed using a multi zone thermo-kinetic combustion model coupled with flow dynamic models. The SMRH utilizes CHEMKIN®-PRO and GT-POWER® software along with an in-house exhaust gas flow model. Experimental data from a single cylinder HCCI engine is used to validate the model for different operating conditions. Validation results show a good agreement with experimental data for predicting combustion phasing, Indicated Mean Effective Pressure (IMEP), thermal efficiency as well as CO emission. The experimentally validated SMRH is then used to investigate the effects of intake and exhaust valve timing on residual affected HCCI engine combustion.
Technical Paper

Measurement of Hydrogen Direct Injection Jet Equivalence Ratio under Elevated Ambient Pressure Condition

2023-04-11
2023-01-0332
Owing to climate change issues caused by global warming, the role of alternative fuels, such as low-carbon and non-carbon fuels, is becoming increasingly important, particularly in the transportation sector. Therefore, hydrogen has emerged as a promising fuel for internal combustion engines because it does not emit carbon dioxide. Direct injection is mandatory for hydrogen-based internal combustion engines to mitigate backfires and low energy density. However, there is a lack of measurement of the equivalence ratio methodology because hydrogen has a higher diffusion rate than conventional fuels. The objective of this research is a feasibility study of laser-induced breakdown spectroscopy (LIBs) for measuring the equivalence ratio. The second harmonic ND-YAG laser was implemented to induce the atomic emission of hydrogen via the breakdown phenomenon. Simultaneously, the hydrogen jet structure was visualized in a constant volume vessel using Schlieren imaging.
X