Refine Your Search

Topic

Author

Search Results

Journal Article

Fast Simulation of Wave Action in Engine Air Path Systems Using Model Order Reduction

2016-04-05
2016-01-0572
Engine downsizing, boosting, direct injection and variable valve actuation, have become industry standards for reducing CO2 emissions in current production vehicles. Because of the increasing complexity of the engine air path system and the high number of degrees of freedom for engine charge management, the design of air path control algorithms has become a difficult and time consuming process. One possibility to reduce the control development time is offered by Software-in-the-Loop (SIL) or Hardware-in-the-Loop (HIL) simulation methods. However, it is significantly challenging to identify engine air path system simulation models that offer the right balance between fidelity, mathematical complexity and computational burden for SIL or HIL implementation.
Technical Paper

Hardware-in-the-Loop, Traffic-in-the-Loop and Software-in-the-Loop Autonomous Vehicle Simulation for Mobility Studies

2020-04-14
2020-01-0704
This paper focuses on finding and analyzing the relevant parameters affecting traffic flow when autonomous vehicles are introduced for ride hailing applications and autonomous shuttles are introduced for circulator applications in geo-fenced urban areas. For this purpose, different scenarios have been created in traffic simulation software that model the different levels of autonomy, traffic density, routes, and other traffic elements. Similarly, software that specializes in vehicle dynamics, physical limitations, and vehicle control has been used to closely simulate realistic autonomous vehicle behavior under such scenarios. Different simulation tools for realistic autonomous vehicle simulation and traffic simulation have been merged together in this paper, creating a realistic simulator with Hardware-in-the-Loop (HiL), Traffic-in-the-Loop (TiL), and Software in-the-Loop (SiL) simulation capabilities.
Technical Paper

International Space Station Radiation Shielding Model Development

2001-07-09
2001-01-2370
The projected radiation levels within the International Space Station (ISS) have been criticized by the Aerospace Safety Advisory Panel in their report to the NASA Administrator. Methods for optimal reconfiguration and augmentation of the ISS shielding are now being developed. The initial steps are to develop reconfigurable and realistic radiation shield models of the ISS modules, develop computational procedures for the highly anisotropic radiation environment, and implement parametric and organizational optimization procedures. The targets of the redesign process are the crew quarters where the astronauts sleep and determining the effects of ISS shadow shielding of an astronaut in a spacesuit. The ISS model as developed will be reconfigurable to follow the ISS. Swapping internal equipment rack assemblies via location mapping tables will be one option for shield optimization.
Technical Paper

Preliminary Effect of Synthetic Vision Systems Displays to Reduce Low-Visibility Loss of Control and Controlled Flight Into Terrain Accidents

2002-04-16
2002-01-1550
An experimental investigation was conducted to study the effectiveness of Synthetic Vision Systems (SVS) flight displays as a means of eliminating Low Visibility Loss of Control (LVLOC) and Controlled Flight Into Terrain (CFIT) accidents by low time general aviation (GA) pilots. A series of basic maneuvers were performed by 18 subject pilots during transition from Visual Meteorological Conditions (VMC) to Instrument Meteorological Conditions (IMC), with continued flight into IMC, employing a fixed-based flight simulator. A total of three display concepts were employed for this evaluation. One display concept, referred to as the Attitude Indicator (AI) replicated instrumentation common in today's General Aviation (GA) aircraft. The second display concept, referred to as the Electronic Attitude Indicator (EAI), featured an enlarged attitude indicator that was more representative of a “glass display” that also included advanced flight symbology, such as a velocity vector.
Technical Paper

The Efficacy of Using Synthetic Vision Terrain-Textured Images to Improve Pilot Situation Awareness

2002-11-05
2002-01-2970
The General Aviation Element of the Aviation Safety Program's Synthetic Vision Systems (SVS) Project is developing technology to eliminate low visibility induced General Aviation (GA) accidents. SVS displays present computer generated 3-dimensional imagery of the surrounding terrain on the Primary Flight Display (PFD) to greatly enhance pilot's situation awareness (SA), reducing or eliminating Controlled Flight into Terrain, as well as Low-Visibility Loss of Control accidents. SVS-conducted research is facilitating development of display concepts that provide the pilot with an unobstructed view of the outside terrain, regardless of weather conditions and time of day. A critical component of SVS displays is the appropriate presentation of terrain to the pilot. An experimental study is being conducted at NASA Langley Research Center (LaRC) to explore and quantify the relationship between the realism of the terrain presentation and resulting enhancements of pilot SA and performance.
Technical Paper

Nowcasting Aircraft Icing Conditions in the Presence of Multilayered Clouds Using Meteorological Satellite Data

2011-06-13
2011-38-0041
Cloud properties retrieved from satellite data are used to diagnose aircraft icing threat in single layer and multilayered ice-over-liquid clouds. The algorithms are being applied in real time to the Geostationary Operational Environmental Satellite (GOES) data over the CONUS with multilayer data available over the eastern CONUS. METEOSAT data are also used to retrieve icing conditions over western Europe. The icing algorithm's methodology and validation are discussed along with future enhancements and plans. The icing risk product is available in image and digital formats on NASA Langley ‘s Cloud and Radiation Products web site, http://www-angler.larc.nasa.gov.
Technical Paper

Aerodynamic Effects of Simulated Ice Accretion on a Generic Transport Model

2011-06-13
2011-38-0065
An experimental research effort was begun to develop a database of airplane aerodynamic characteristics with simulated ice accretion over a large range of incidence and sideslip angles. Wind-tunnel testing was performed at the NASA Langley 12-ft Low-Speed Wind Tunnel using a 3.5% scale model of the NASA Langley Generic Transport Model. Aerodynamic data were acquired from a six-component force and moment balance in static-model sweeps from α = -5 to 85 deg. and β = -45 to 45 deg. at a Reynolds number of 0.24x10⁶ and Mach number of 0.06. The 3.5% scale GTM was tested in both the clean configuration and with full-span artificial ice shapes attached to the leading edges of the wing, horizontal and vertical tail. Aerodynamic results for the clean airplane configuration compared favorably with similar experiments carried out on a 5.5% scale GTM.
Technical Paper

Accuracy Assessment of Three-Dimensional Vehicle Edge Features Generated with Aid of Photogrammetric Epipolar Lines

2018-04-03
2018-01-0530
Photogrammetry is widely used in the automotive and accident reconstruction communities to extract three-dimensional information from photographs. Prior studies in the literature have demonstrated the accuracy of such methods when photographs contain easily-identifiable, distinct points; however, it is often desirable to determine measurements for locations where a seam, edge, or contour line is available. To exploit such details, an analyst can control the direction that the epipolar line is projected onto the camera plane by strategic selection of photographs. This process constrains the search for the corresponding 3D point to a straight line that can be projected perpendicular to the seam, edge, or contour line. Thus, the goal of this study was to evaluate the modeling accuracy for cases in which an analyst uses epipolar lines in a workflow.
Technical Paper

Development of the Temperature Control Scheme for the CALIPSO Integrated Lidar Transmitter Subsystem

2006-07-17
2006-01-2277
Following the satellite-level thermal vacuum test for the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation spacecraft, project thermal engineers determined that the radiator used to cool the Integrated Lidar Transmitter subsystem during its operation was oversized. In addition, the thermal team also determined that the operational heaters were undersized, thus creating two related problems. Without the benefit of an additional thermal vacuum test, it was necessary to develop and prove by analysis a laser temperature control scheme using the available resources within the spacecraft along with proper resizing of the radiator. A resizing methodology and new laser temperature control scheme were devised that allowed, with a minimum of 20% heater power margin, the operating laser to maintain temperature at the preferable set point. This control scheme provided a solution to a critical project problem.
Technical Paper

Directly Solar-Pumped Iodine Laser for Beamed Power Transmission in Space

1992-08-03
929438
A new approach for development of a 50-kW directly solar-pumped iodine laser (DSPIL) system as a space-based power station was made using a confocal unstable resonator (CUR). The CUR-based DSPIL has advantages, such as performance enhancement, reduction of total mass, and simplicity which alleviates the complexities inherent in the previous system, master oscillator/power amplifier (MOPA) configurations. In this design, a single CUR-based DSPIL with 50-kW output power was defined and compared to the MOPA-based DSPIL. Integration of multiple modules for power requirements more than 50-kW is physically and structurally a sound approach as compared to building a single large system. An integrated system of multiple modules can respond to various mission power requirements by combining and aiming the coherent beams at the user's receiver.
Technical Paper

Power Transmission by Laser Beam from Lunar-Synchronous Satellites to a Lunar Rover

1992-08-03
929437
This study addresses the possibility of beaming laser power from synchronous lunar orbits (the L1 and L2 LaGrange points) to a manned long-range lunar rover. The rover and two versions of a satellite system (one powered by a nuclear reactor; the other by photovoltaics) are described in terms of their masses, geometry, power needs, mission and technological capabilities. Laser beam power is generated by a laser diode array in the satellite and converted to 30 kW of electrical power at the rover. Present technological capabilities, with some extrapolation to near future capabilities, are used in the descriptions. The advantages of the two satellite/rover systems over other such systems and over rovers with on-board power are discussed along with the possibility of enabling other missions.
Technical Paper

Simulation Study of a Commercial Transport Airplane During Stall and Post-Stall Flight

2004-11-02
2004-01-3100
As part of NASA’s Aviation Safety and Security Program, a simulation study of a twin-jet transport aircraft crew training simulation was conducted to address fidelity for upset or loss-of-control flight conditions. Piloted simulation studies were conducted to compare the baseline crew training simulation model with an enhanced aerodynamic model that was developed for high-angle-of-attack conditions. These studies were conducted in a flaps-up configuration and covered the approach-to-stall, stall and post-stall flight regimes. Qualitative pilot comments and preliminary comparison with flight test data indicate that the enhanced model is a significant improvement over the baseline. Some of the significant unrepresentative characteristics that are predicted by the baseline crew training simulation for flight in the post-stall regime have been identified.
Technical Paper

APPLICATIONS OF ADVANCED AERODYNAMIC TECHNOLOGY TO LIGHT AIRCRAFT

1973-02-01
730318
This paper discusses a project for adapting advanced technology, much of it borrowed from the jet transport, to general aviation design practice. The NASA funded portion of the work began in 1969 at the University of Kansas and resulted in a smaller, experimental wing with spoilers and powerful flap systems for a Cessna Cardinal airplane. The objective was to obtain increased cruise performance and improved ride quality while maintaining the take-off and landing speeds of the unmodified airplane. Some flight data and research pilot comments are presented. The project was expanded in 1972 to include a light twin-engine airplane. For the twin there was the added incentive of a potential increase in single-engine climb performance. The expanded project is a joint effort involving the University of Kansas, Piper Aircraft Company, Robertson Aircraft Company, and Wichita State University. The use of a new high-lift Whitcomb airfoil is planned for both the wing and the propellers.
Technical Paper

Simulation Study of an Automatic Trim System for Reducing the Control Forces on a Light Twin After an Engine Failure

1985-04-01
850913
An automatic trim system for reducing the control forces after an engine failure on a light twin has been investigated on the Langley General Aviation Simulator. The system schedules open-loop trim tab deflections as a function of differential propeller slipstream dynamic pressure and freestream dynamic pressure. The system is described and the airplane-system static and dynamic characteristics are documented. Three NASA research pilots evaluated the effectiveness of the system for takeoff and landing maneuvers. A variety of off-nominal system characteristics were studied. The system was judged to be generally beneficial, providing a 2 to 3 point improvement in pilot rating for the tasks used in the evaluations.
Technical Paper

Orbiter Post-Tire Failure and Skid Testing Results

1989-09-01
892338
An investigation was conducted at the NASA Langley Research Center's Aircraft Landing Dynamics Facility (ALDF) to define the post-tire failure drag characteristics of the Space Shuttle Orbiter main tire and wheel assembly. Skid tests on various materials were also conducted to define their friction and wear rate characteristics under higher speed and bearing pressures than any previous tests. The skid tests were conducted to support a feasibility study of adding a skid to the orbiter strut between the main tires to protect an intact tire from failure due to overload should one of the tires fail. Roll-on-rim tests were conducted to define the ability of a standard and a modified orbiter main wheel to roll without a tire. Results of the investigation are combined into a generic model of strut drag versus time under failure conditions for inclusion into rollout simulators used to train the shuttle astronauts.
Technical Paper

Langley Research Center Resources and Needs for Manned Space Operations Simulation

1987-10-01
871724
Over the past three decades, the application of simulation facilities to manned space flight projects has increased chances of successful mission completion by revealing the capabilities and limitations of both man and machine. The Space Station era, which implies on-orbit assembly, heightened system complexity, and great diversity of operations and equipment, will require increased dependence on simulation studies to validate the tools and techniques being proposed. For this reason the Society of Automotive Engineers (SAE) undertook a survey of both the facilities available for and the research requiring such simulations. This paper was written to provide LaRC input to the SAE survey of simulation needs and resources. The paper provides a brief historial sketch of early Langley Research Center simulators, and the circumstances are described which resulted in a de-emphasis of manned simulation in 1971.
Technical Paper

Prescan Extension Testing of an ADAS Camera

2023-04-11
2023-01-0831
Testing vision-based advanced driver assistance systems (ADAS) in a Camera-in-the-Loop (CiL) bench setup, where external visual inputs are used to stimulate the system, provides an opportunity to experiment with a wide variety of test scenarios, different types of vehicle actors, vulnerable road users, and weather conditions that may be difficult to replicate in the real world. In addition, once the CiL bench is setup and operating, experiments can be performed in less time when compared to track testing alternatives. In order to better quantify normal operating zones, track testing results were used to identify behavior corridors via a statistical methodology. After determining normal operational variability via track testing of baseline stationary surrogate vehicle and pedestrian scenarios, these operating zones were applied to screen-based testing in a CiL test setup to determine particularly challenging scenarios which might benefit from replication in a track testing environment.
Technical Paper

Application of Adversarial Networks for 3D Structural Topology Optimization

2019-04-02
2019-01-0829
Topology optimization is a branch of structural optimization which solves an optimal material distribution problem. The resulting structural topology, for a given set of boundary conditions and constraints, has an optimal performance (e.g. minimum compliance). Conventional 3D topology optimization algorithms achieve quality optimized results; however, it is an extremely computationally intensive task which is, in general, impractical and computationally unachievable for real-world structural optimal design processes. Therefore, the current development of rapid topology optimization technology is experiencing a major drawback. To address the issues, a new approach is presented to utilize the powerful abilities of large deep learning models to replicate this design process for 3D structures. Adversarial models, primarily Wasserstein Generative Adversarial Networks (WGAN), are constructed which consist of 2 deep convolutional neural networks (CNN) namely, a discriminator and a generator.
Technical Paper

Investigation of Measurement Errors in Doppler Global Velocimetry

1999-10-19
1999-01-5599
While the initial development phase of Doppler Global Velocimetry (DGV) has been successfully completed, there remains a critical next phase to be conducted, namely the determination of an error budget to provide quantitative bounds for measurements obtained by this technology. This paper describes a laboratory investigation that consisted of a detailed interrogation of potential error sources to determine their contribution to the overall DGV error budget. A few sources of error were obvious; e.g., Iodine vapor absorption lines, optical systems, and camera characteristics. However, additional non-obvious sources were also discovered; e.g., laser frequency and single-frequency stability, media scattering characteristics, and interference fringes. This paper describes each identified error source, its effect on the overall error budget, and where possible, corrective procedures to reduce or eliminate its effect.
Technical Paper

An Experimental Investigation of the Flow Over the Rear End of a Notchback Automobile Configuration

2000-03-06
2000-01-0489
An experimental investigation of the flow over the rear end of a 0.16 scale notchback automobile configuration has been conducted in the NASA Langley Basic Aerodynamics Research Tunnel (BART). The objective of this work was to investigate the flow separation that occurs behind the backlight and obtain experimental data that can be used to understand the physics and time-averaged structure of the flow field. A three-component laser velocimeter was used to make non-intrusive, velocity measurements in the center plane and in a single cross-flow plane over the decklid. In addition to off-body measurements, flow conditions on the car surface were documented via surface flow visualization, boundary layer measurements, and surface pressures.
X