Refine Your Search

Topic

Search Results

Viewing 1 to 18 of 18
Technical Paper

Parameter Determination and Vehicle Dynamics Modeling for The National Advanced Driving Simulator of the 2006 BMW 330i

2007-04-16
2007-01-0818
The paper discusses the development of a model for the 2006 BMW 330i for the National Advanced Driving Simulator's (NADS) vehicle dynamics simulation, NADSdyna. The front and rear suspensions are independent strut and link type suspensions modeled using recursive rigid-body dynamics formulations. The suspension springs and shock absorbers are modeled as force elements. The paper includes parameters for front and rear semi-empirical tire models used with NADSdyna. Longitudinal and lateral tire force plots are also included. The NADSdyna model provides state-of-the-art high-fidelity handling dynamics for real-time hardware-in-the-loop simulation. The realism of a particular model depends heavily on how the parameters are obtained from the actual physical system. Complex models do not guarantee high fidelity if the parameters used were not properly measured. Methodologies for determining the parameters are detailed in this paper.
Technical Paper

Restraint Robustness in Frontal Crashes

2007-04-16
2007-01-1181
The protection of a vehicle occupant in a frontal crash is a combination of vehicle front structural design and occupant restraint design. Once chosen and manufactured, these design features must interact with a wide variety of structural characteristics in potential crash partners. If robust, the restraint design will provide a high level of protection for a wide variety of crash conditions. This paper examines how robust a given restraint system is for occupant self-protection and how frontal design can improve the restraint performance of potential crash partners, thus improving their restraint robustness as well. To examine restraint robustness in self protection, the effect of various vehicle deceleration characteristics on occupant injury potential is investigated for a given restraint design. A MADYMO model of a 1996 Taurus interior and its restraint system with a Hybrid III 50th percentile male dummy are simulated and subjected to 650 crash pulses taken during 25 years of U.S.
Technical Paper

Closed Loop Steering System Model for the National Advanced Driving Simulator

2004-03-08
2004-01-1072
This paper presents the details of the model for the physical steering system used on the National Advanced Driving Simulator. The system is basically a hardware-in-the-loop (steering feedback motor and controls) steering system coupled with the core vehicle dynamics of the simulator. The system's torque control uses cascaded position and velocity feedback and is controlled to provide steering feedback with variable stiffness and dynamic properties. The reference model, which calculates the desired value of the torque, is made of power steering torque, damping function torque, torque from tires, locking limit torque, and driver input torque. The model also provides a unique steering dead-band function that is important for on-center feel. A Simulink model of the hardware/software is presented and analysis of the simulator steering system is provided.
Technical Paper

Parameter Determination and Vehicle Dynamics Modeling for the NADS of the 1998 Chevrolet Malibu

2001-03-05
2001-01-0140
The paper discusses the development of a model for a 1998 Chevrolet Malibu for the National Advanced Driving Simulator’s (NADS) vehicle dynamics simulation, NADSdyna. The Malibu is the third vehicle modeled for the NADS, and this is the third paper dealing with model development. SAE Paper 970564 contains details of the model for the 1994 Ford Taurus and SAE Paper 1999–01-0121 contains details of the model for the 1997 Jeep Cherokee. The front and rear suspensions are independent strut and link type suspensions modeled using recursive rigid body dynamics formulations. The suspension springs and shock absorbers are modeled as elements in the rigid body formulation. To complement the vehicle dynamics for the NADS application, subsystem models that include tire forces, braking, powertrain, aerodynamics, and steering are added to the rigid body dynamics model. The models provide state-of-the-art high fidelity vehicle handling dynamics for real-time simulation.
Technical Paper

Analysis of Truck-Light Vehicle Crash Data for Truck Aggressivity Reduction

2001-11-12
2001-01-2726
The National Highway Traffic Safety Administration and the University of Michigan Transportation Institute are investigating truck design countermeasures to provide safety benefits during collisions with light vehicles. The goal is to identify approaches that would best balance costs and benefits. This paper outlines the first phase of this study, an analysis of two-vehicle, truck/light vehicle crashes from 1996 through 1998 using several crash data bases to obtain a current description and determine the scope of the aggressivity problem. Truck fronts account for 60% of light vehicle fatalities in collisions with trucks. Collision with the front of a truck carries the highest probability of fatal (K) or incapacitating (A) injury. Truck sides account for about the same number of K and A-injuries combined as truck fronts, though injury probability is substantially lower than in crashes involving the front of a truck.
Technical Paper

Characterization of CIREN

2001-06-04
2001-06-0024
This paper focuses on the overall structure of the Crash Injury Research and Engineering Network (CIREN), how data are collected, and what makes it unique. It discusses how it can be used to expand and enhance the information in other databases. CIREN is a collaborative effort to conduct research on crashes and injuries at nine Level 1 Trauma Centers which are linked by a computer network. Researchers can review data and share expertise, which will lead to a better understanding of crash injury mechanisms and the design of safer vehicles. CIREN data are being used in outreach and education programs on motor vehicle safety. CIREN outreach and education has already been credited with lifesaving information dissemination.
Technical Paper

Simulations of large school bus safety restraints~NHTSA

2001-06-04
2001-06-0226
This paper describes computer crash simulations performed by the National Highway Traffic Safety Administration (NHTSA) under the current research and testing activities on large school bus safety restraints. The simulations of a frontal rigid barrier test and comparative dynamic sled testing for compartmentalization, lap belt, and lap/shoulder belt restraint strategies are presented. School bus transportation is one of the safest forms of transportation in the United States. School age children transported in school buses are safer than children transported in motor vehicles of any other type. Large school buses provide protection because of their size and weight. Further, they must meet minimum Federal motor vehicle safety standards (FMVSSs) mandating compartmentalized seating, improved emergency exits, stronger roof structures and fuel systems, and better bus body joint strength.
Technical Paper

Foundations and elements of the NHTSA Thor ALPHA ATD design

2001-06-04
2001-06-0107
Early influences upon Thor ATD development are described, and the path of Thor development is traced up to the release of the current Thor ALPHA ATD design. Since the display of the first Thor ATD prototype at the 15th ESV Conference in Melbourne in 1996, Thor has undergone extensive test and evaluation on an international basis in cooperation with many partner institutions. This paper summarizes some of the lessons learned from this broad test experience, and documents actions which have been undertaken to upgrade the Thor product to ALPHA status in light of this experience.
Technical Paper

Strategies for Passenger Car Designs to Improve Occupant Protection in Real World Side Crashes

1993-03-01
930482
The National Highway Traffic Safety Administration (NHTSA) upgraded the side impact protection requirement in Federal Motor Vehicle Safety Standard (FMVSS) No. 214 and added dynamic requirements to reduce the likelihood of thoracic injuries in side crashes. As part of the agency's research in developing the requirements of the standard, NHTSA developed a mathematical model for simulation of side impacts. This paper investigates the overall safety performance, based on Thoracic Trauma Index (TTI) as the criteria for passenger cars in real world side crashes, with the aid of the simulation model. A Thoracic Trauma Index Factor (TTIF) is utilized to compare relative safety performance of passenger cars under various conditions of impact. The concept of relating energy dissipation in various side structure and padding countermeasures is used to develop a family of curves that are representative of a design platform.
Technical Paper

Hardware Evaluation of Heavy Truck Side and Rear Object Detection Systems

1995-02-01
951010
This paper focuses on two types of electronics-based object detection systems for heavy truck applications: those sensing the presence of objects to the rear of the vehicle, and those sensing the presence of objects on the right side of the vehicle. The rearward sensing systems are intended to aid drivers when backing their vehicles, typically at very low “crawl” speeds. Six rear object detection systems that were commercially available at the time that this study was initiated were evaluated. The right side looking systems are intended primarily as supplements to side view mirror systems and as an aid for detecting the presence of adjacent vehicles when making lane changes or merging maneuvers. Four side systems, two commercially available systems and two prototypes, were evaluated.
Technical Paper

Methodology for Validating the National Advanced Driving Simulator's Vehicle Dynamics (NADSdyna)

1997-02-24
970562
This paper presents an overview of work performed by the National Highway Traffic Safety Administration's (NHTSA) Vehicle Research and Test Center (VRTC) to test, validate, and improve the planned National Advanced Driving Simulator's (NADS) vehicle dynamics simulation. This vehicle dynamics simulation, called NADSdyna, was developed by the University of Iowa's Center for Computer-Aided Design (CCAD) NADSdyna is based upon CCAD's general purpose, real-time, multi-body dynamics software, referred to as the Real-Time Recursive Dynamics (RTRD), supplemented by vehicle dynamics specific submodules VRTC has “beta tested” NADSdyna, making certain that the software both works as computer code and that it correctly models vehicle dynamics. This paper gives an overview of VRTC's beta test work with NADSdyna. The paper explains the methodology used by VRTC to validate NADSdyna.
Technical Paper

Determining the Effects of Brake Degradation

1973-02-01
730190
This paper presents an approach for evaluating the effects of brake system component degradation on vehicle braking performance. The approach involves the use of an inertial brake dynamometer, vehicle computer simulation, and vehicle test. The approach, procedures, and results of the study of the effects of worn friction materials, worn discs and drums, and contaminated brakes are presented.
Technical Paper

Improving Safety Belt Acceptability to the Consumer

1979-02-01
790681
Currently, consumers must contend with many comfort and convenience problems whenever they use a manually operated (“active”) safety belt. Such problems are prevalent not only in older models but in new cars as well. Beginning with 1982 models, most auto manufacturers plan to install automatic safety belts to meet new Federal requirements for passive occupant protection. To reduce the likelihood of consumer rejection and non-use of automatic as well as manual belt systems, research has been conducted to develop performance specifications for improved comfort and convenience. This paper discusses specifications and criteria to improve the safety belts by reducing comfort and convenience variables for both manual and automatic systems.
Technical Paper

Applicability of Braking Control Systems for Highway Vehicles

1970-02-01
700516
An evaluation of the applicability of braking control systems for highway vehicles was carried out. Elements of the study included development of a theory of vehicle response in braking maneuvers, design of logic for a braking control system, incorporation of the control in a hybrid computer simulation of a motor vehicle, and evaluation of control system performance. Benefits of braking control systems are illustrated in terms of improvement in stability characteristics (rear-wheel control) and in directional control (four-wheel system).
Technical Paper

Improvements in the Simulation of Unrestrained Passengers in Frontal Crashes Using Vehicle Test Data

1986-02-24
860654
The absence of data on the load deflection and energy absorption characteristics of vehicle interiors has been a factor which limits the accuracy of crash victim simulations. A recent test program conducted for the National Highway Traffic Safety Administration has developed data on the interactions of dashboards and knee panels with chests and knees. This paper summarizes the test results for several vehicles and shows how these results are used in simulating vehicle crash tests. Comparisons between crash tests and computer reconstruction using the 3-Dimensional Crash Victim Simulator (CVS-3D) for a late model car are included. The simulation shows good agreement with test and illustrates the application of available static and dynamic test data to improve occupant simulations.
Technical Paper

A Simple, Practical Method of Assessing Foam Padding Materials for Head Impact Protection

1986-02-24
860199
Since 1960 head impact responses under the action of various forces have been studied analytically. However, the effects of force distribution upon head injury mechanisms have not been studied because measurements of force distribution during head impacts have not been experimentally available. In the past, several methods were tested in order to measure head contact pressure, but the results were not very useful. Since the skull is a composite shell structure, the thin shell theory may be valid for stress analysis. According to the theory, the influence of an external load on a shell element damps out rapidly as the distance between the load and the element increases. Stress concentrations occur in the shell elements directly under the center core area of a localized external load. Therefore, the force on the center core, not the entire force distribution, is critical for the assessment of skull responses.
Technical Paper

Simulation of Road Crash Facial Lacerations By Broken Windshields

1987-02-23
870320
The facial laceration test has been proposed as an addition to the dummy injury criteria of Federal Motor Vehicle Safety Standard 208. To better understand laceration conditions as they actually occur, three road crashes of increasing severity, all involving facial laceration by the broken (cracked) windshield and one involving partial ejection, have been simulated physically and analytically. The physical simulations used vehicle test bucks, the Hybrid III head with the chamois facial coverings of the facial laceration test, and a piston - constrained Head Impactor. Computer simulations of the three crashes were also carried out using the CALSPAN 3D “CVS” and the 2D “DRISIM” computer programs. The computer simulations provide insight into the effective mass of the head and body on windshield contact, and the forces, velocities, and accelerations involved.
Technical Paper

Design Considerations for a Compatibility Test Procedure

2002-03-04
2002-01-1022
A major focus of the National Highway Traffic Safety Administration's (NHTSA) vehicle compatibility and aggressivity research program is the development of a laboratory test procedure to evaluate compatibility. This paper is written to explain the associated goals, issues, and design considerations and to review the preliminary results from this ongoing research program. One of NHTSA's activities supporting the development of a test procedure involves investigating the use of an mobile deformable barrier (MDB) into vehicle test to evaluate both the self-protection (crashworthiness) and the partner-protection (compatibility) of the subject vehicle. For this development, the MDB is intended to represent the median or expected crash partner. This representiveness includes such vehicle characteristics as weight, size, and frontal stiffness. This paper presents distributions of vehicle measurements based on 1996 fleet registration data.
X