Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

In-Use and Vehicle Dynamometer Evaluation and Comparison of Class 7 Hybrid Electric and Conventional Diesel Delivery Trucks

2013-09-24
2013-01-2468
This study compared fuel economy and emissions between heavy-duty hybrid electric vehicles (HEVs) and equivalent conventional diesel vehicles. In-use field data were collected from daily fleet operations carried out at a FedEx facility in California on six HEV and six conventional 2010 Freightliner M2-106 straight box trucks. Field data collection primarily focused on route assessment and vehicle fuel consumption over a six-month period. Chassis dynamometer testing was also carried out on one conventional vehicle and one HEV to determine differences in fuel consumption and emissions. Route data from the field study was analyzed to determine the selection of dynamometer test cycles. From this analysis, the New York Composite (NYComp), Hybrid Truck Users Forum Class 6 (HTUF 6), and California Air Resource Board (CARB) Heavy Heavy-Duty Diesel Truck (HHDDT) drive cycles were chosen.
Technical Paper

Impact to Cooling Airflow from Truck Platooning

2020-04-14
2020-01-1298
We investigate tradeoffs between the airflow strategies related to engine cooling and the aerodynamic-enabled fuel savings created by platooning. By analyzing air temperatures, engine temperatures and cooling air flow at different platoon distances, we show the thermal impact to the engine from truck platooning. Previously, we collected wind and thermal data for numerous heavy-duty truck platoon configurations (gaps ranging from 4 to 87 meters) and reported the significant fuel savings enabled by these configurations. The fuel consumption for all trucks in the platoon were measured using the SAE J1321 gravimetric procedure as well as calibrated J1939 instantaneous fuel rate while travelling at 65 mph and loaded to a gross weight of 65,000 lb.
Journal Article

Long-Haul Truck Sleeper Heating Load Reduction Package for Rest Period Idling

2016-04-05
2016-01-0258
Annual fuel use for sleeper cab truck rest period idling is estimated at 667 million gallons in the United States, or 6.8% of long-haul truck fuel use. Truck idling during a rest period represents zero freight efficiency and is largely done to supply accessory power for climate conditioning of the cab. The National Renewable Energy Laboratory’s CoolCab project aims to reduce heating, ventilating, and air conditioning (HVAC) loads and resulting fuel use from rest period idling by working closely with industry to design efficient long-haul truck thermal management systems while maintaining occupant comfort. Enhancing the thermal performance of cab/sleepers will enable smaller, lighter, and more cost-effective idle reduction solutions. In addition, if the fuel savings provide a one- to three-year payback period, fleet owners will be economically motivated to incorporate them.
Journal Article

Potentials for Platooning in U.S. Highway Freight Transport

2017-03-28
2017-01-0086
Smart technologies enabling connection among vehicles and between vehicles and infrastructure as well as vehicle automation to assist human operators are receiving significant attention as a means for improving road transportation systems by reducing fuel consumption – and related emissions – while also providing additional benefits through improving overall traffic safety and efficiency. For truck applications, which are currently responsible for nearly three-quarters of the total U.S. freight energy use and greenhouse gas (GHG) emissions, platooning has been identified as an early feature for connected and automated vehicles (CAVs) that could provide significant fuel savings and improved traffic safety and efficiency without radical design or technology changes compared to existing vehicles. A statistical analysis was performed based on a large collection of real-world U.S. truck usage data to estimate the fraction of total miles that are technically suitable for platooning.
Journal Article

Heavy-Duty Vehicle Port Drayage Drive Cycle Characterization and Development

2016-09-27
2016-01-8135
In an effort to better understand the operational requirements of port drayage vehicles and their potential for adoption of advanced technologies, National Renewable Energy Laboratory (NREL) researchers collected over 36,000 miles of in-use duty cycle data from 30 Class 8 drayage trucks operating at the Port of Long Beach and Port of Los Angeles in Southern California. These data include 1-Hz global positioning system location and SAE J1939 high-speed controller area network information. Researchers processed the data through NREL’s Drive-Cycle Rapid Investigation, Visualization, and Evaluation tool to examine vehicle kinematic and dynamic patterns across the spectrum of operations. Using the k-medoids clustering method, a repeatable and quantitative process for multi-mode drive cycle segmentation, the analysis led to the creation of multiple drive cycles representing four distinct modes of operation that can be used independently or in combination.
Technical Paper

Impact of Lateral Alignment on the Energy Savings of a Truck Platoon

2020-04-14
2020-01-0594
A truck platooning system was tested using two heavy-duty tractor-trailer trucks on a closed test track to investigate the sensitivity of intentional lateral offsets over a range of intervehicle spacings. The fuel consumption for both trucks in the platoon was measured using the SAE J1321 gravimetric procedure while travelling at 65 mph and loaded to a gross weight of 65,000 lb. In addition, the SAE J1939 instantaneous fuel rate was calibrated against the gravimetric measurements and used as proxy for additional analyses. The testing campaign demonstrated the effects of intervehicle gaps, following-vehicle longitudinal control, and manual lateral control. The new results are compared to previous truck-platooning studies to reinforce the value of the new information and demonstrate similarity to past trends. Fuel savings for the following vehicle was observed to exceed 10% at closer following distances.
Journal Article

Thermal Load Reduction of Truck Tractor Sleeper Cabins

2008-10-07
2008-01-2618
Several configurations of truck tractor sleeper cabs were tested and modeled to investigate the potential to reduce heating and cooling loads. Two trucks were tested outdoors and a third was used as a control. Data from the testing were used to validate a computational fluid dynamics (CFD) model and this model was used to predict reductions in cooling loads during daytime rest periods. The test configurations included the application of standard-equipped sleeper privacy curtain and window shades, an optional insulated or arctic sleeper curtain, and insulated window coverings. The standard curtain reduced sleeper area heating load by 21% in one test truck, while the arctic curtain decreased it by 26%. Insulated window coverings reduced the heating load by 16% in the other test truck and lowered daytime solar temperature gain by 8°C. The lowered temperature resulted in a predicted 34% reduction in cooling load from the model.
Journal Article

Effect of B20 and Low Aromatic Diesel on Transit Bus NOx Emissions Over Driving Cycles with a Range of Kinetic Intensity

2012-09-24
2012-01-1984
The objective of this research project was to compare the emissions of oxides of nitrogen (NOx) from transit buses on as many as five different fuels and three standard transit duty cycles to establish if there is a real-world biodiesel NOx increase for transit bus duty cycles and engine calibrations. Prior studies have shown that B20 can cause a small but significant increase in NOx emissions for some engines and duty cycles. Six buses spanning engine build years 1998 to 2011 were tested on the National Renewable Energy Laboratory's Renewable Fuels and Lubricants research laboratory's heavy-duty chassis dynamometer with certification diesel, certification B20 blend, low aromatic [California Air Resources Board (CARB)] diesel, low aromatic B20 blend, and B100 fuels over the Manhattan, Orange County and UDDS test cycles.
Journal Article

Evaluation of Fuel-Borne Sodium Effects on a DOC-DPF-SCR Heavy-Duty Engine Emission Control System: Simulation of Full-Useful Life

2016-10-17
2016-01-2322
For renewable fuels to displace petroleum, they must be compatible with emissions control devices. Pure biodiesel contains up to 5 ppm Na + K and 5 ppm Ca + Mg metals, which have the potential to degrade diesel emissions control systems. This study aims to address these concerns, identify deactivation mechanisms, and determine if a lower limit is needed. Accelerated aging of a production exhaust system was conducted on an engine test stand over 1001 h using 20% biodiesel blended into ultra-low sulfur diesel (B20) doped with 14 ppm Na. This Na level is equivalent to exposure to Na at the uppermost expected B100 value in a B20 blend for the system full-useful life. During the study, NOx emissions exceeded the engine certification limit of 0.33 g/bhp-hr before the 435,000-mile requirement.
Technical Paper

Alternative Fuel Truck Evaluation Project - Design and Preliminary Results

1998-05-04
981392
The objective of this project, which is supported by the U.S. Department of Energy (DOE) through the National Renewable Energy Laboratory (NREL), is to provide a comprehensive comparison of heavy-duty trucks operating on alternative fuels and diesel fuel. Data collection from up to eight sites is planned. This paper summarizes the design of the project and early results from the first two sites. Data collection is planned for operations, maintenance, truck system descriptions, emissions, duty cycle, safety incidents, and capital costs and operating costs associated with the use of alternative fuels in trucking.
Technical Paper

Effect of Biodiesel Blends on Urea Selective Catalytic Reduction Catalyst Performance with a Medium-Duty Engine

2008-10-06
2008-01-2484
Testing to investigate biodiesel's impact on the performance of a zeolite-based selective catalytic reduction (SCR) system was conducted. The tests employed a 2004 compliant Cummins ISB with common rail fuel injection, EGR, and variable geometry turbo. This 5.9L, 300HP engine was retrofitted with a Johnson-Matthey DPF + SCR (SCRT™) system. Testing was conducted over eight steady-state engine operating modes which provided a wide range of exhaust temperature and exhaust chemistry conditions. Fuels tested were a 2007 certification quality ultra-low sulfur diesel (ULSD), as well as a soy derived biodiesel in a B20 blend. B20 produced slightly lower catalyst temperatures and higher NO2:NOx ratios relative to ULSD, but no measureable difference in the overall NOx conversion over the SCR system. The dominant variable influencing SCR performance is the catalyst space velocity, which is unchanged with the use of B20.
Technical Paper

Emission Reductions and Operational Experiences With Heavy Duty Diesel Fleet Vehicles Retrofitted with Continuously Regenerated Diesel Particulate Filters in Southern California

2001-03-05
2001-01-0512
Particulate emission control from diesel engines is one of the major concerns in the urban areas in California. Recently, regulations have been proposed for stringent PM emission requirements from both existing and new diesel engines. As a result, particulate emission control from urban diesel engines using advanced particulate filter technology is being evaluated at several locations in California. Although ceramic based particle filters are well known for high PM reductions, the lack of effective and durable regeneration system has limited their applications. The continuously regenerated diesel particulate filter (CRDPF) technology discussed in this presentation, solves this problem by catalytically oxidizing NO present in the diesel exhaust to NO2 which is utilized to continuously combust the engine soot under the typical diesel engine operating condition.
Technical Paper

Achieving Tier 2 Bin 5 Emission Levels with a Medium Duty Diesel Pick-Up and a NOX Adsorber, Diesel Particulate Filter Emissions System-Exhaust Gas Temperature Management

2004-03-08
2004-01-0584
Increasing fuel costs and the desire for reduced dependence on foreign oil has brought the diesel engine to the forefront of future medium-duty vehicle applications in the United States due to its higher thermal efficiency and superior durability. The main obstacle to the increased use of diesel engines in this platform is the upcoming extremely stringent, Tier 2 emission standard. In order to succeed, diesel vehicles must comply with emissions standards while maintaining their excellent fuel economy. The availability of technologies such as common rail fuel injection systems, low sulfur diesel fuel, NOX adsorber catalysts (NAC), and diesel particle filters (DPFs) allow the development of powertrain systems that have the potential to comply with these future requirements. In meeting the Tier 2 emissions standards, the heavy light-duty trucks (HLDTs) and medium-duty passenger vehicles (MDPVs) will face the greatest technological challenges. In support of this, the U.S.
Technical Paper

Achieving Tier 2 Bin 5 Emission Levels with a Medium Duty Diesel Pick-Up and a NOX Adsorber, Diesel Particulate Filter Emissions System - NOX Adsorber Management

2004-03-08
2004-01-0585
Increasing fuel costs and the desire for reduced dependence on foreign oil has brought the diesel engine to the forefront of future medium-duty vehicle applications in the United States due to its higher thermal efficiency and superior durability. The main obstacle to the increased use of diesel engines in this platform is the upcoming extremely stringent, Tier 2 emission standard. In order to succeed, diesel vehicles must comply with emissions standards while maintaining their excellent fuel economy. The availability of technologies such as common rail fuel injection systems, low sulfur diesel fuel, NOX adsorber catalysts (NAC), and diesel particle filters (DPFs) allow the development of powertrain systems that have the potential to comply with these future requirements. In meeting the Tier 2 emissions standards, the heavy light-duty trucks (HLDTs) and medium-duty passenger vehicles (MDPVs) will face the greatest technological challenges. In support of this, the U.S.
Technical Paper

Development of a Diesel Passenger Car Meeting Tier 2 Emissions Levels

2004-03-08
2004-01-0581
Increasing fuel costs, the need to reduce dependence on foreign oil as well as the high efficiency and the desire for superior durability have caused the diesel engine to again become a prime target for light-duty vehicle applications in the United States. In support of this the U.S. Department of Energy (DOE) has engaged in a test project under the Advanced Petroleum Based Fuels-Diesel Emission Control (APBF-DEC) activity to develop a passenger car with the capability to demonstrate compliance with Tier 2 Bin 5 emission targets with a fresh emission control catalyst system. In order to achieve this goal, a prototype engine was installed in a passenger car and optimized to provide the lowest practical level of engine-out emissions.
Technical Paper

Chassis Dynamometer Emission Measurements from Refuse Trucks Using Dual-Fuel™ Natural Gas Engines

2003-11-10
2003-01-3366
Emissions from 10 refuse trucks equipped with Caterpillar C-10 engines were measured on West Virginia University's (WVU) Transportable Emissions Laboratory in Riverside, California. The engines all used a commercially available Dual-Fuel™ natural gas (DFNG) system supplied by Clean Air Partners Inc. (CAP), and some were also equipped with catalyzed particulate filters (CPFs), also from CAP. The DFNG system introduces natural gas with the intake air and then ignites the gas with a small injection of diesel fuel directly into the cylinder to initiate combustion. Emissions were measured over a modified version of a test cycle (the William H. Martin cycle) previously developed by WVU. The cycle attempts to duplicate a typical curbside refuse collection truck and includes three modes: highway-to-landfill delivery, curbside collection, and compaction. Emissions were compared to similar trucks that used Caterpillar C-10 diesels equipped with Engelhard's DPX catalyzed particulate filters.
Technical Paper

Development of Truck Engine Technologies for Use with Fischer-Tropsch Fuels

2001-09-24
2001-01-3520
The Fischer-Tropsch (FT) process can be used to synthesize diesel fuels from a variety of energy sources, including coal, natural gas and biomass. Diesel fuels produced from the FT process are essentially sulfur-free, have very low aromatic content, and have excellent ignition characteristics. Because of these favorable attributes, FT diesel fuels may offer environmental benefits over transportation fuels derived from crude oil. Previous tests have shown that FT diesel fuel can be used in unmodified engines and have been shown to lower regulated emissions. Whereas exhaust emissions reductions from these previous studies have been impressive, this paper demonstrates that far greater exhaust emissions reductions are possible if the diesel engine is optimized to exploit the properties of the FT fuels. A Power Stroke 7.3 liter turbocharged diesel engine has been modified for use with FT diesel.
Technical Paper

Fuel Used for Vehicle Air Conditioning: A State-by-State Thermal Comfort-Based Approach

2002-06-03
2002-01-1957
How much fuel does vehicle air conditioning actually use? This study attempts to answer that question to determine the national and state-by-state fuel use impact seen by using air conditioning in light duty gasoline vehicles. The study used data from US cities, representative of averages over the past 30 years, whose temperature, incident radiation, and humidity varied through time of day and day of year. National surveys estimated when people drive their vehicles during the day and throughout the year. A simple thermal comfort model based on Fanger's heat balance equations determined the percentage of time that a driver would use the air conditioning based on the premise that if a person were dissatisfied with the thermal environment, they would turn on the air conditioning. Vehicle simulations for typical US cars and trucks determined the fuel economy reduction seen with AC use.
Technical Paper

What FutureCar MPG Levels and Technology Will be Necessary?

2002-06-03
2002-01-1899
The potential peaking of world conventional oil production and the possible imperative to reduce carbon emissions will put great pressure on vehicle manufacturers to produce more efficient vehicles, on vehicle buyers to seek them out in the marketplace, and on energy suppliers to develop new fuels and delivery systems. Four cases for stabilizing or reducing light vehicle fuel use, oil use, and/or carbon emissions over the next 50 years are presented. Case 1 - Improve mpg so that the fuel use in 2020 is stabilized for the next 30 years. Case 2 - Improve mpg so that by 2030 the fuel use is reduced to the 2000 level and is reduced further in subsequent years. Case 3 - Case 1 plus 50% ethanol use and 50% low-carbon fuel cell vehicles by 2050. Case 4 - Case 2 plus 50% ethanol use and 50% low-carbon fuel cell vehicles by 2050. The mpg targets for new cars and light trucks require that significant advances be made in developing cost-effective and very efficient vehicle technologies.
Technical Paper

Year-Long Evaluation of Trucks and Buses Equipped with Passive Diesel Particulate Filters

2002-03-04
2002-01-0433
A program has been completed to evaluate ultra-low sulfur diesel fuels and passive diesel particulate filters (DPFs) in truck and bus fleets operating in southern California. The fuels, ECD and ECD-1, are produced by ARCO (a BP Company) and have less than 15 ppm sulfur content. Vehicles were retrofitted with two types of catalyzed DPFs, and operated on ultra-low sulfur diesel fuel for over one year. Exhaust emissions, fuel economy and operating cost data were collected for the test vehicles, and compared with baseline control vehicles. Regulated emissions are presented from two rounds of tests. The first round emissions tests were conducted shortly after the vehicles were retrofitted with the DPFs. The second round emissions tests were conducted following approximately one year of operation. Several of the vehicles retrofitted with DPFs accumulated well over 100,000 miles of operation between test rounds.
X