Refine Your Search

Search Results

Viewing 1 to 3 of 3
Journal Article

Study of DME Diesel Engine for Low NOx and CO2 Emission and Development of DME Trucks for Commercial Use

2011-08-30
2011-01-1961
Study of DME diesel engines was conducted to improve fuel consumption and emissions of its. Additionally, DME trucks were built for the promotion and the road tests of these trucks were executed on EFV21 project. In this paper, results of diesel engine tests and DME truck driving tests are presented. As for DME diesel engines, the performance of a DME turbocharged diesel engine with LPL-EGR was evaluated and the influence of the compression ratio was also explored. As for DME trucks, a 100,000km road test was conducted on a DME light duty truck. After the road test, the engine was disassembled for investigation. Furthermore, two DME medium duty trucks have been developed and are now the undergoing practical road testing in each area of two transportation companies in Japan.
Technical Paper

Characteristics of Combustion Pressure Vibration in Hydrogen Fuel Injection Hot Surface Ignition Engines

1987-09-01
871611
In high pressure hydrogen injection hot surface ignition engines under nearly all engine operating conditions combustion pressure vibration is generated just after ignition. As a result of many experimental investigations the true nature for the cause of this interesting phenomenon was found and are listed: (1) This phenomenon probably originates from the extremely high local rate of burning of the hydrogen-air mixture. (2) Accompaning the stronger combustion pressure vibration was an increase in engine vibration and noise with increase in NOx emission and higher piston temperature. (3) Longer ignition delay resulted in a steeper pressure-time diagram which resalted in a stronger combustion pressure vibration. (4) The phenomenon had negligible effect on engine performance. (5) The phenomenon can be prevented by premixing a ceratain quantity of hydrogen gas into the intake air stream. The result was a shortened ignition delay.
Technical Paper

Association of Impact Velocity with Risks of Serious Injuries and Fatalities to Pedestrians in Commercial Truck-Pedestrian Accidents

2016-11-07
2016-22-0007
This study aimed to clarify the relationship between truck-pedestrian crash impact velocity and the risks of serious injury and fatality to pedestrians. We used micro and macro truck-pedestrian accident data from the Japanese Institute for Traffic Accident Research and Data Analysis (ITARDA) database. We classified vehicle type into five categories: heavy-duty trucks (gross vehicle weight [GVW] ≥11 × 103 kg [11 tons (t)], medium-duty trucks (5 × 103 kg [5 t] ≤ GVW < 11 × 103 kg [11 t]), light-duty trucks (GVW <5 × 103 kg [5 t]), box vans, and sedans. The fatality risk was ≤5% for light-duty trucks, box vans, and sedans at impact velocities ≤ 30 km/h and for medium-duty trucks at impact velocities ≤20 km/h. The fatality risk was ≤10% for heavy-duty trucks at impact velocities ≤10 km/h. Thus, fatality risk appears strongly associated with vehicle class.
X