Refine Your Search

Search Results

Viewing 1 to 4 of 4
Journal Article

A Study of Anisotropy and Post-Necking Local Fracture Strain of Advanced High Strength Steel with the Utilization of Digital Image Correlation

2011-04-12
2011-01-0992
The automotive industry has a strong need for lightweight materials capable of withstanding large mechanical loads. Advanced high-strength steels (AHSS), which have high tensile strength and formability, show great promise for automotive applications, yet if they are to be more widely used, it's important to understand their deformation behavior; this is particularly important for the development of forming limit diagrams (FLD) used in stamping processes. The goal of the present study was to determine the extent to which anisotropy introduced by the rolling direction affects the local fracture strain. Three grades of dual-phase AHSS and one high-strength low-alloy (HSL A) 50ksi grade steel were tested under plane strain conditions. Half of the samples were loaded along their rolling direction and the other half transverse to it. In order to achieve plane strain conditions, non-standard dogbone samples were loaded on a wide-grip MTS tensile test machine.
Journal Article

Quality Inspection of Spot Welds using Digital Shearography

2012-04-16
2012-01-0182
Spot Welding is an important welding technique which is widely used in automotive and aerospace industry. One of the keys of checking the quality of the welds is measuring the size of the nugget. In this paper, the Shearographic technique is utilized to test weld joint samples under the thermal loading condition. The goal is to identify the different group of the nuggets (i.e. small, middle, and large sizes, which indicate the quality of spot welds). In the experiments, the sample under test is fixed by a magnet method from behind at the four edges. Thermal loading was applied in the back side and the sample is inspected using the digital Shearographic system in the front side. Results show the great possibility of classifying the nugget size into three groups and the measurement is well repeatable.
Technical Paper

Whole Field Bonded Steel Tensile Test Using Digital Image Correlation System

2010-04-12
2010-01-0960
Adhesive bonding has many applications in the automotive industry. The single-lapped bonded joint is the most typically used among various bonding types. This paper presents experimental research for determining the strain field of the single-lapped joint under tensile loading. The materials for the joint are epoxy-based structural adhesive and low-carbon electrolytic zinc steel plate. In the study, a DIC (digital image correlation) system was adopted to measure the strain distribution of the bonded joint during a tensile test. The bonded steel coupons in the tensile test were prepared according to the ASTM standard. During the measurement, images of the coupon joint were taken before and after the deformation process. Then the DIC system measured the strain of bonded joint by comparing two consecutive images. The measured data from the DIC was compared to data taken simultaneously from a traditional extensometer.
Technical Paper

Buckling of Structures Subject to Multiple Forces

2013-04-08
2013-01-1370
Frames are important structures found in many transportation applications such as automotive bodies and train cars. They are also widely employed in buildings, bridges, and other load bearing designs. When a frame is carrying multiple loads, it can potentially risk a catastrophic buckling failure. The loads on the frame may be non-proportional in that one force stays constant while the other is increased until buckling occurs. In this study the buckling problem is formulated as a constrained eigenvalue problem (CEVP). As opposed to other CEVP in which the eigenvectors are forced to comply with a number of the constraints, the eigenvalues in the current CEVP are subject to some equality constraints. A numerical algorithm for solving the constrained eigenvalue problem is presented. The algorithm is a simple trapping scheme in which the computation starts with an initial guess and a window containing the potential target for the eigenvalue is identified.
X