Refine Your Search

Topic

Author

Search Results

Journal Article

Comparative Assessment of Frequency Dependent Joint Properties Using Direct and Inverse Identification Methods

2015-06-15
2015-01-2229
Elastomeric joints are utilized in many automotive applications, and exhibit frequency and excitation amplitude dependent properties. Current methods commonly identify only the cross-point joint property using displacement excitation at stepped single frequencies. This process is often time consuming and is limited to measuring a single dynamic stiffness term of the joint stiffness matrix. This study focuses on developing tractable laboratory inverse experiments to identify frequency dependent stiffness matrices up to 1000 Hz. Direct measurements are performed on a commercial elastomer test system and an inverse experiment consisting of an elastic beam (with a square cross section) attached to a cylindrical elastomeric joint. Sources of error in the inverse methodology are thoroughly examined and explained through simulation which include ill-conditioning of matrices and the sensitivity to modeling error.
Technical Paper

Hardware-in-the-Loop, Traffic-in-the-Loop and Software-in-the-Loop Autonomous Vehicle Simulation for Mobility Studies

2020-04-14
2020-01-0704
This paper focuses on finding and analyzing the relevant parameters affecting traffic flow when autonomous vehicles are introduced for ride hailing applications and autonomous shuttles are introduced for circulator applications in geo-fenced urban areas. For this purpose, different scenarios have been created in traffic simulation software that model the different levels of autonomy, traffic density, routes, and other traffic elements. Similarly, software that specializes in vehicle dynamics, physical limitations, and vehicle control has been used to closely simulate realistic autonomous vehicle behavior under such scenarios. Different simulation tools for realistic autonomous vehicle simulation and traffic simulation have been merged together in this paper, creating a realistic simulator with Hardware-in-the-Loop (HiL), Traffic-in-the-Loop (TiL), and Software in-the-Loop (SiL) simulation capabilities.
Technical Paper

The Effects of Varying Penetration Rates of L4-L5 Autonomous Vehicles on Fuel Efficiency and Mobility of Traffic Networks

2020-04-14
2020-01-0137
With the current drive of automotive and technology companies towards producing vehicles with higher levels of autonomy, it is inevitable that there will be an increasing number of SAE level L4-L5 autonomous vehicles (AVs) on roadways in the near future. Microscopic traffic simulators that simulate realistic traffic flow are crucial in studying, understanding and evaluating the fuel usage and mobility effects of having a higher number of autonomous vehicles (AVs) in traffic under realistic mixed traffic conditions including both autonomous and non-autonomous vehicles. In this paper, L4-L5 AVs with varying penetration rates in total traffic flow were simulated using the microscopic traffic simulator Vissim on urban, mixed and freeway roadways. The roadways used in these simulations were replicas of real roadways in and around Columbus, Ohio, including an AV shuttle routes in operation.
Technical Paper

Acoustic Characteristics of Automotive Catalytic Converter Assemblies

2004-03-08
2004-01-1002
An experimental study of the acoustic characteristics of automotive catalytic converters is presented. The investigation addresses the effects and relative importance of the elements comprising a production catalytic converter assembly including the housing, substrate, mat and seals. Attenuation characteristics are measured for one circular and one oval catalytic converter geometry, each having 400 cell per square inch substrates. For each geometry, experimental results are presented to address the effect of individual components in isolation, and in combination with other assembly components. Additional experiments investigate the significance of acoustic paths around the substrate and through the peripheral wall of the substrate. The experimental results are compared to address the significance of each component on the overall attenuation.
Technical Paper

Impact of Servo Press Motion on Hole Flanging of High Strength Steels

2017-03-28
2017-01-0311
The capabilities of the servo press for varying the ram speed during stroke and for adjusting the stroke length are well known. Various companies installed servo presses for blanking. Some of the considerations may include increase in productivity and flexibility in adjusting the ram stroke, noise reduction and improvement of edge quality of blanked edge. The objectives of this study are to determine the effect of ram (blanking) speed upon the edge quality, and the effect of multiple step blanking using several punch motions, during one blanking stroke.
Technical Paper

Integrated Computational Materials Engineering (ICME) Multi-Scale Model Development for Advanced High Strength Steels

2017-03-28
2017-01-0226
This paper presents development of a multi-scale material model for a 980 MPa grade transformation induced plasticity (TRIP) steel, subject to a two-step quenching and partitioning heat treatment (QP980), based on integrated computational materials engineering principles (ICME Model). The model combines micro-scale material properties defined by the crystal plasticity theory with the macro-scale mechanical properties, such as flow curves under different loading paths. For an initial microstructure the flow curves of each of the constituent phases (ferrite, austenite, martensite) are computed based on the crystal plasticity theory and the crystal orientation distribution function. Phase properties are then used as an input to a state variable model that computes macro-scale flow curves while accounting for hardening caused by austenite transformation into martensite under different straining paths.
Technical Paper

Effect of Traffic, Road and Weather Information on PHEV Energy Management

2011-09-11
2011-24-0162
Energy management plays a key role in achieving higher fuel economy for plug-in hybrid electric vehicle (PHEV) technology; the state of charge (SOC) profile of the battery during the entire driving trip determines the electric energy usage, thus determining the fuel consumed. The energy management algorithm should be designed to meet all driving scenarios while achieving the best possible fuel economy. The knowledge of the power requirement during a driving trip is necessary to achieve the best fuel economy results; performance of the energy management algorithm is closely related to the amount of information available in the form of road grade, velocity profiles, trip distance, weather characteristics and other exogenous factors. Intelligent transportation systems (ITS) allow vehicles to communicate with one another and the infrastructure to collect data about surrounding, and forecast the expected events, e.g., traffic condition, turns, road grade, and weather forecast.
Technical Paper

Mission-based Design Space Exploration for Powertrain Electrification of Series Plugin Hybrid Electric Delivery Truck

2018-04-03
2018-01-1027
Hybrid electric vehicles (HEV) are essential for reducing fuel consumption and emissions. However, when analyzing different segments of the transportation industry, for example, public transportation or different sizes of delivery trucks and how the HEV are used, it is clear that one powertrain may not be optimal in all situations. Choosing a hybrid powertrain architecture and proper component sizes for different applications is an important task to find the optimal trade-off between fuel economy, drivability, and vehicle cost. However, exploring and evaluating all possible architectures and component sizes is a time-consuming task. A search algorithm, using Gaussian Processes, is proposed that simultaneously explores multiple architecture options, to identify the Pareto-optimal solutions.
Technical Paper

Design of Robust Active Load-Dependent Vehicular Suspension Controller via Static Output Feedback

2013-09-24
2013-01-2367
In this paper, we focus on the active vehicular suspension controller design. A quarter-vehicle suspension system is employed in the system analysis and synthesis. Due to the difficulty and cost in the measuring of all the states, we only choose two variables to construct the feedback loop, that is, the control law is a static-output-feedback (SOF) control. However, the sensor reduction would induce challenges in the controller design. One of the main challenges is the NP-hard problem in the corresponding SOF controller design. In order to deal with this challenge, we propose a two-stage design method in which a state-feedback controller is firstly designed and then the state-feedback controller is used to decouple the nonlinear conditions. To better compensate for the varying vehicle load, a robust load-dependent control strategy is adopted. The proposed design methodology is applied to a suspension control example.
Technical Paper

The Highway Research Laboratory of Ohio's Transportation Research Center

1970-02-01
700524
This paper presents some of the technical considerations that underlie the development of the master plan and the establishment of design specifications for Ohio's Highway Research Laboratory. It describes the overall features of the master plan and discusses some of the critical design features as these relate to the various tracks and other field facilities. The development of the master plan was guided by a study of the layout of existing proving grounds and by the experience gained over the years in their operations. It was guided furthermore by a set of principles relating to operational considerations, considerations of flexibility in the layout, land utilization, safety, capacity, and cost. Finally, it was guided by an indication of future research and development needs as expressed by researchers and potential sponsors in both government and industry.
Technical Paper

Multiple Rear-end Collisions in Freeway Traffic, Their Causes and Their Avoidance

1970-02-01
700085
The sensitivity factor, λ, of stimulus-response car following equations was computed, based on response times, τ, obtained from aerial survey data. Vehicles of a platoon are investigated as they approach, proceed through, and leave behind a kinematic disturbance, and an inherent local and asymptotic instability is discovered. Aerial survey data is used in a numerical example to demonstrate how multiple rear-end collisions can be triggered by one vehicle. A driver aid system, informing drivers about the differential velocity between lead and following vehicles, could improve stability, although the final answer appears to lie in automated or semi-automated longitudinal control systems.
Technical Paper

Flight Investigation of Natural Laminar Flow on the Bellanca Skyrocket II

1983-02-01
830717
Two major concerns have inhibited the use of natural laminar flow (NLF) for viscous drag reduction on production aircraft. These are the concerns of achieveability of NLF on practical airframe surfaces, and maintainability in operating environments. Previous research in this area left a mixture of positive and negative conclusions regarding these concerns. While early (pre-1950) airframe construction methods could not achieve NLF criteria for waviness, several modern construction methods (composites for example) can achieve the required smoothness. This paper presents flight experiment data on the achieveability and maintainability of NLF on a high-performance, single-propeller, composite airplane, the Bellanca Skyrocket II. The significant contribution of laminar flow to the performance of this airplane was measured. Observations of laminar flow in the propeller slipstream are discussed, as are the effects of insect contamination on the wing.
Technical Paper

Cooperative Collision Avoidance in a Connected Vehicle Environment

2019-04-02
2019-01-0488
Connected vehicle (CV) technology is among the most heavily researched areas in both the academia and industry. The vehicle to vehicle (V2V), vehicle to infrastructure (V2I) and vehicle to pedestrian (V2P) communication capabilities enable critical situational awareness. In some cases, these vehicle communication safety capabilities can overcome the shortcomings of other sensor safety capabilities because of external conditions such as 'No Line of Sight' (NLOS) or very harsh weather conditions. Connected vehicles will help cities and states reduce traffic congestion, improve fuel efficiency and improve the safety of the vehicles and pedestrians. On the road, cars will be able to communicate with one another, automatically transmitting data such as speed, position, and direction, and send alerts to each other if a crash seems imminent. The main focus of this paper is the implementation of Cooperative Collision Avoidance (CCA) for connected vehicles.
Technical Paper

AV/ADAS Safety-Critical Testing Scenario Generation from Vehicle Crash Data

2022-03-29
2022-01-0104
This research leverages publicly available crash data to construct safety-critical scenarios focusing primarily on Level 3 Automated Driving Systems (ADS) safety assessment under highway driving conditions. NHTSA’s Crashworthiness Data System (CDS) has a rich dataset of representative crashes sampled from numerous Primary Sampling Units (PSUs) across the country. Each of these datasets includes the storyline, road geometry information, detailed description of actors involved in the crash, weather information, scene diagrams, crash images, and a myriad of other crash-specific details. The methodology adopted aims to generate critical scenarios from real-world driving to complement the existent regulatory tests for the validation of L3 ADS. For this work, a four-step approach was adopted to extract safety-critical scenarios from crash data.
Technical Paper

Shared Autonomous Vehicle Mobility for a Transportation Underserved City

2023-04-11
2023-01-0048
This paper proposes the use of an on-demand, ride hailed and ride-Shared Autonomous Vehicle (SAV) service as a feasible solution to serve the mobility needs of a small city where fixed route, circulator type public transportation may be too expensive to operate. The presented work builds upon our earlier work that modeled the city of Marysville, Ohio as an example of such a city, with realistic traffic behavior, and trip requests. A simple SAV dispatcher is implemented to model the behavior of the proposed on-demand mobility service. The goal of the service is to optimally distribute SAVs along the network to allocate passengers and shared rides. The pickup and drop-off locations are strategically placed along the network to provide mobility from affordable housing, which are also transit deserts, to locations corresponding to jobs and other opportunities.
Technical Paper

Study on State-of-the-Art Preventive Maintenance Techniques for ADS Vehicle Safety

2023-04-11
2023-01-0846
1 Autonomous Driving Systems (ADS) are developing rapidly. As vehicle technology advances to SAE level 3 and above (L4, L5), there is a need to maximize and verify safety and operational benefits. As a result, maintenance of these ADS systems is essential which includes scheduled, condition-based, risk-based, and predictive maintenance. A lot of techniques and methods have been developed and are being used in the maintenance of conventional vehicles as well as other industries, but ADS is new technology and several of these maintenance types are still being developed as well as adapted for ADS. In this work, we are presenting a systematic literature review of the “State of the Art” knowledge for the maintenance of a fleet of ADS which includes fault diagnostics, prognostics, predictive maintenance, and preventive maintenance.
Technical Paper

An Approach to Model a Traffic Environment by Addressing Sparsity in Vehicle Count Data

2023-04-11
2023-01-0854
For realistic traffic modeling, real-world traffic calibration data is needed. These data include a representative road network, road users count by type, traffic lights information, infrastructure, etc. In most cases, this data is not readily available due to cost, time, and confidentiality constraints. Some open-source data are accessible and provide this information for specific geographical locations, however, it is often insufficient for realistic calibration. Moreover, the publicly available data may have errors, for example, the Open Street Maps (OSM) does not always correlate with physical roads. The scarcity, incompleteness, and inaccuracies of the data pose challenges to the realistic calibration of traffic models. Hence, in this study, we propose an approach based on spatial interpolation for addressing sparsity in vehicle count data that can augment existing data to make traffic model calibrations more accurate.
Technical Paper

Biologically Inspired, Intelligent Muscle Material for Sensing and Responsive Delivery of Countermeasures

2000-07-10
2000-01-2514
The design and development of new biologically inspired technologies based on intelligent materials that are capable of sensing the levels of target biomolecules and, if needed, trigger appropriate countermeasures to regulate biological processes and rhythms of the astronauts is being undertaken in our laboratories. This is accomplished by coupling biologically inspired sensors that monitor the levels of the target biomolecules with intelligent polymeric materials that can regulate the release of a countermeasure. The technology developed here integrates sensors and artificial muscle material into a self-regulating device that can perform with minimal crew intervention. Further, it takes advantage of microfabrication technology to construct lightweight and robust responsive delivery systems. These “intelligent” devices address the need for the control and regulation of biological processes and rhythms under spaceflight conditions.
Technical Paper

Integrated Approach to the Selection of Cost-Effective and Lean Process and Equipment in Forming

1999-03-01
1999-01-0423
A significant number of formed parts constitute the components of an automobile or aircraft. The formed blanks for the components are produced at different temperatures ranging from room temperature to 2250 degrees Fahrenheit for steel. Forming progressions convert a basic shape or geometry (a cylindrical billet, for example) of metal into a more complex shape close to the required final component geometry. The progression steps, choice of temperatures and equipment significantly impact the cost of the blank. A ‘Discriminating Cost Model’ was developed to capture the cost effectiveness of a given choice of process or equipment, and an AI (Artificial Intelligence) search algorithm implemented to quickly search through the large number of process and equipment selection options to arrive at the most cost effective choice. Two applications of this methodology to existing plant processes to significantly reduce cost and implement ‘lean’ principles of manufacturing are discussed.
Technical Paper

Robust Path Tracking Control for Autonomous Heavy Vehicles

2018-04-03
2018-01-1082
With high maneuverability and heavy-duty load capacity, articulated steer vehicles (ASV) are widely used in construction, forestry and mining sectors. However, the steering process of ASV is much different from wheeled steer vehicles and tractor-trailer vehicles. Unsuitable steering control in path following could easily give rise to the “snaking” behaviour, which greatly reduces the safety and stability of ASV. In order to achieve precise control for ASV, a novel path tracking control method is proposed by virtual terrain field (VTF) method. A virtual U-shaped terrain field is assumed to exist along the reference path. The virtual terrain altitude depends on the lateral error, heading error, preview distance and road curvature. If the vehicle deviates from the reference line, it will be pulled back to the lowest position under the influence of additional lateral tire forces which are caused by the virtual banked road.
X