Refine Your Search

Topic

Author

Search Results

Video

Ford 2011 6.7L Power Stroke® Diesel Engine Combustion System Development

2012-02-16
This session focuses on kinetically controlled combustion. Experimental and simulation studies pertaining to various means of controlling combustion are welcome. Examples are research studies dealing with temperature and composition distribution inside the cylinder and their impact on heat release process. Studies clarifying the role of fuel physical and chemical properties in autoignition are also welcome. Presenter Hanho Yun, General Motors Company
Journal Article

Instabilities at the Low-Flow Range of a Turbocharger Compressor

2013-05-13
2013-01-1886
The acoustic and performance characteristics of an automotive centrifugal compressor are studied on a steady-flow turbocharger test bench, with the goal of advancing the current understanding of compression system instabilities at the low-flow range. Two different ducting configurations were utilized downstream of the compressor, one with a well-defined plenum (large volume) and the other with minimized (small) volume of compressed air. The present study measured time-resolved oscillations of in-duct and external pressure, along with rotational speed. An orifice flow meter was incorporated to obtain time-averaged mass flow rate. In addition, fast-response thermocouples captured temperature fluctuations in the compressor inlet and exit ducts along with a location near the inducer tips.
Journal Article

Scaling Considerations for Fluidic Oscillator Flow Control on the Square-back Ahmed Vehicle Model

2015-04-14
2015-01-1561
Improvements in highway fuel economy require clever design and novel methods to reduce the drag coefficient. The integration of active flow control devices into vehicle design shows promise for greater reductions in drag coefficient. This paper examines the use of fluidic oscillators for separation control at the rear of an Ahmed vehicle model. A fluidic oscillator is a simple device that generates a sweeping jet output, similar to some windshield wiper spray nozzles, and is increasingly recognized as an efficient means to control separation. In this study, fluidic oscillators were used to blow unsteady air jets and control flow separation on rear boat-tail flaps, achieving drag reductions greater than 70 counts. The method appears to scale favorably to a larger model, and realistic effects such as a rolling road appear to have a small impact on the oscillator's control authority.
Journal Article

Development of Refined Clutch-Damper Subsystem Dynamic Models Suitable for Time Domain Studies

2015-06-15
2015-01-2180
This study examines clutch-damper subsystem dynamics under transient excitation and validates predictions using a new laboratory experiment (which is the subject of a companion paper). The proposed models include multi-staged stiffness and hysteresis elements as well as spline nonlinearities. Several example cases such as two high (or low) hysteresis clutches in series with a pre-damper are considered. First, detailed multi-degree of freedom nonlinear models are constructed, and their time domain predictions are validated by analogous measurements. Second, key damping sources that affect transient events are identified and appropriate models or parameters are selected or justified. Finally, torque impulses are evaluated using metrics, and their effects on driveline dynamics are quantified. Dynamic interactions between clutch-damper and spline backlash nonlinearities are briefly discussed.
Journal Article

Flow-Induced Whistle in the Joint of Thermal Expansion Valve and Suction Tube in Automotive Refrigerant System

2015-06-15
2015-01-2275
In the thermal expansion valve (TXV) refrigerant system, transient high-pitched whistle around 6.18 kHz is often perceived following air-conditioning (A/C) compressor engagements when driving at higher vehicle speed or during vehicle acceleration, especially when system equipped with the high-efficiency compressor or variable displacement compressor. The objectives of this paper are to conduct the noise source identification, investigate the key factors affecting the whistle excitation, and understand the mechanism of the whistle generation. The mechanism is hypothesized that the whistle is generated from the flow/acoustic excitation of the turbulent flow past the shallow cavity, reinforced by the acoustic/structural coupling between the tube structural and the transverse acoustic modes, and then transmitted to evaporator. To verify the mechanism, the transverse acoustic mode frequency is calculated and it is coincided to the one from measurement.
Journal Article

Effect of Aerodynamically Induced Pre-Swirl on Centrifugal Compressor Acoustics and Performance

2015-06-15
2015-01-2307
The effect of aerodynamically induced pre-swirl on the acoustic and performance characteristics of an automotive centrifugal compressor is studied experimentally on a steady-flow turbocharger facility. Accompanying flow separation, broadband noise is generated as the flow rate of the compressor is reduced and the incidence angle of the flow relative to the leading edge of the inducer blades increases. By incorporating an air jet upstream of the inducer, a tangential (swirl) component of velocity is added to the incoming flow, which improves the incidence angle particularly at low to mid-flow rates. Experimental data for a configuration with a swirl jet is then compared to a baseline with no swirl. The induced jet is shown to improve the surge line over the baseline configuration at all rotational speeds examined, while restricting the maximum flow rate. At high flow rates, the swirl jet increases the compressor inlet noise levels over a wide frequency range.
Journal Article

The Effect of Ported Shroud Recirculating Casing Treatment on Turbocharger Centrifugal Compressor Acoustics

2017-06-05
2017-01-1796
Ported shroud compressor covers recirculate low momentum air near the inducer blade tips, and the use of these devices has traditionally been confined to extending the low-flow operating region at elevated rotational speeds for compressors on compression-ignition (CI) engines. Implementation of ported shrouds on compressors for spark-ignition (SI) engines has been generally avoided due to operation at pressure ratios below the region where ported shrouds improve low-flow range, the slight efficiency penalty, and the perception of increased noise. The present study provides an experimental investigation of performance and acoustics for a SI engine turbocharger compressor both with a ported shroud and without (baseline). The objective of implementing the ported shroud was to reduce mid-flow range broadband whoosh noise of the baseline compressor over 4-12 kHz.
Technical Paper

Benchmarking Computational Time of Dynamic Programming for Autonomous Vehicle Powertrain Control

2020-04-14
2020-01-0968
Dynamic programming (DP) has been used for optimal control of hybrid powertrain and vehicle speed optimization particularly in design phase for over a couple of decades. With the advent of autonomous and connected vehicle technologies, automotive industry is getting closer to implementing predictive optimal control strategies in real time applications. The biggest challenge in implementation of optimal controls is the limitation on hardware which includes processor speed, IO speed, and random access memory. Due to the use of autonomous features, modern vehicles are equipped with better onboard computational resources. In this paper we present a comparison between multiple hardware options for dynamic programming. The optimal control problem considered, is the optimization of travel time and fuel economy by tuning the torque split ratio and vehicle speed while maintaining charge sustaining operation.
Journal Article

Material Selection During Early Design Phase Using Simplified Models

2011-04-12
2011-01-0526
Optimal material selection for a part becomes quite challenging with dynamically changing data from various sources. Multiple manufacturing locations with varying supplier capabilities add to the complexity. There is need to balance product attribute requirements with manufacturing feasibility, cost, sourcing, and vehicle program strategies. The sequential consideration of product attribute, manufacturing, and sourcing aspects tends to result in design churns. Ford R&A is developing a web based material recommender tool to help engineers with material selection integrating sourcing, manufacturing, and design considerations. This tool is designed to filter the list of materials for a specific part and provide a prioritized list of materials; and allow engineers to do weight and cost trade-off studies. The initial implementation of this material recommender tool employs simplified analytical calculators for evaluation of structural performance metrics of parts.
Journal Article

Modeling and Analysis of a Turbocharged Diesel Engine with Variable Geometry Compressor System

2011-09-11
2011-24-0123
In order to increase the efficiency of automotive turbochargers at low speed without compromising the performance at maximum boost conditions, variable geometry compressor (VGC) systems, based on either variable inlet guide vanes or variable geometry diffusers, have been recently considered as a future design option for automotive turbochargers. This work presents a modeling, analysis and optimization study for a Diesel engine equipped with a variable geometry compressor that help understand the potentials of such technology and develop control algorithms for the VGC systems,. A cycle-averaged engine system model, validated on experimental data, is used to predict the most important variables characterizing the intake and exhaust systems (i.e., mass flow rates, pressures, temperatures) and engine performance (i.e., torque, BMEP, volumetric efficiency), in steady-state and transient conditions.
Journal Article

Centralized Torque Controller for a Nonminimum Phase Phenomenon in a Powersplit HEV

2012-04-16
2012-01-1026
Torque controls for the engine and electric motors in a Powersplit HEV are keys to the success of balancing fuel economy, driveability, and battery power control. The electric variable transmission (EVT) offers an opportunity to let the engine operate at system-optimal fuel efficient points independently of any load. Existing work shows such a benefit can be realized through a decentralized control structure that translates the driver inputs to independent engine torque and speed control. However, our study shows that the decentralized control structures have a fundamental limitation that arises from the nonminimum phase (NMP) zero in the transfer function from the driver power command to the generator torque change rate, and thus not only is it difficult to obtain smooth generator torque but also it can cause violations on battery power limits during transients. Additionally, it adversely affects the driveability due to the generator torque transients reflected at the ring gear.
Journal Article

Side Crash Pressure Sensor Prediction: An Improved Corpuscular Particle Method

2012-04-16
2012-01-0043
In an attempt to predict the responses of side crash pressure sensors, the Corpuscular Particle Method (CPM) was adopted and enhanced in this research. Acceleration-based crash sensors have traditionally been used extensively in automotive industry to determine the air bag firing time in the event of a vehicle accident. The prediction of crash pulses obtained from the acceleration-based crash sensors by using computer simulations has been very challenging due to the high frequency and noisy responses obtained from the sensors, especially those installed in crash zones. As a result, the sensor algorithm developments for acceleration-based sensors are largely based on prototype testing. With the latest advancement in the crash sensor technology, side crash pressure sensors have emerged recently and are gradually replacing acceleration-based sensor for side impact applications.
Technical Paper

Biaxial Torsion-Bending Fatigue of SAE Axle Shafts

1991-02-01
910164
Variable amplitude torsion, bending, and combined torsion and bending fatigue tests were performed on an axle shaft. The moment inputs used were taken from the respective history channels of a cable log skidder vehicle axle. Testing results indicated that combined variable amplitude loading lives were shorter than the lives of specimens subjected to bending or torsion alone. Calculations using strain rosette readings indicated that principle strains were most active around specific angles but also occurred with lesser magnitudes through a wider angular range. Over the course of a biaxial test, cyclic creep narrowly limited the angles and magnitudes of the principal strains. This limitation was not observed in the calculated principal stress behavior. Simple life predictions made on the measured strain gage histories were non-conservative in most cases.
Technical Paper

High Speed Fuel Injection System for 2-Stroke D.I. Gasoline Engine

1991-02-01
910666
Two-stroke gasoline engines are known to benefit from using in-cylinder fuel injection which improves their ability to meet the strict fuel economy and exhaust emissions requirements. A conventional method of in-cylinder fuel injection involves application of plunger-type positive displacement pumps. Two-stroke engines are usually smaller and lighter than their 4-stroke counterparts of equal power and need a pump that should also be small and light and, preferably, simple in construction. Because a 2-stroke engine fires every crankshaft revolution, its fuel injection pump must run at crankshaft speed (twice the speed of a 4-stroke engine pump). An electronically controlled fuel injection system has been designed to satisfy the needs of a small automotive 2-stroke engine capable of running at speeds of up to 6000 rpm.
Technical Paper

A Development Process to Improve Vehicle Sound Quality

1991-05-01
911079
Vehicle sound quality has become an important basic performance requirement. Traditionally, automobile noise studies were focused on quietness. It is now necessary for the automobile to be more than quiet. The sound must be pleasing. This paper describes a development process to improve both vehicle noise level and sound quality. Formal experimental design techniques were utilized to quantify various hardware effects. A-weighted sound pressure level, Speech Intelligibility, and Composite Rating of Preference were the three descriptors used to characterize the vehicle's sound quality. Engineering knowledge augmented with graphical and statistical techniques were utilized during data analysis. The individual component contributions to each of the sound quality descriptors were also quantified in this study.
Technical Paper

Studying the Effects of Lapping Process on Hypoid Gears Surface Finish and Transmission Errors

2007-05-15
2007-01-2229
There are several geometric and working parameters, besides offset, that have minor effects on hypoid gears efficiency (i.e. spiral angle, pressure angle, lubricant type & temperature, surface finish, etc.). Some theoretical analyses of mechanical efficiency of hypoid gears show that surface finish has considerable effect on hypoid gear efficiency. This is due to a high sliding to rolling ratio in these types of gears. In this paper, a study on measuring of surface finish of both ring gear and pinion will be presented. Moreover, the effects of lapping on surface finish will be discussed. Using an accurate form-measuring machine, surface finish measurements were done on several experimentally produced hypoid gear pairs1. Despite the fact that lapping is expected to improve the surface finish, measurement results show that ring gear's surface finish becomes worse (roughness increased) after lapping while no consistent results for pinion surface finish were observed.
Technical Paper

Compound Electroformed Metal Nozzles for High Pressure Gasoline Injection

1998-02-23
980818
The objective of this research was to evaluate the effects that higher fluid injection pressures and nozzle geometry have on compound fuel injector nozzle performance. Higher pressures are shown to significantly reduce droplet size, increase the discharge coefficient and reduce the overall size of a nozzle spray. It is also shown that the geometry has a significant effect on nozzle performance, and it can be manipulated to give a desired spray shape.
Technical Paper

Initial Evaluation of a Spill Valve Concept for Two-Stroke Cycle Engine Light Load Operation

1990-09-01
901663
Two-stroke cycle direct injection engines can achieve adequate stability at idle with stratified combustion at very lean overall air-fuel ratio, but exhaust temperature is very low. A rotary valve system was designed to spill charge from the cylinder into the intake tract during the compression stroke, in order to allow stable operation at lower engine delivery ratio and thereby increase exhaust temperature. Reduction of the engine delivery ratio was not achieved due to the poor scavenging characteristics of the swirl liners used, which resulted in high content of exhaust residual gas in the spill recirculation flow. Although the concept objective of higher exhaust temperature was not realized, the results indicate that the concept may be feasible if high purity of the spill recirculation flow can be achieved in conjunction with high trapping efficiency.
Technical Paper

Powertrain Applications for Rapid Prototyping, Fabrication and Tooling in Motorsports

1998-11-16
983091
Rapid Prototyping, Fabrication and Tooling is a process that blends a series of technologies (machines, tools, and methods) capable of generating physical objects directly from a CAD database. The process dramatically reduces the time spent during product development by allowing for fast visualization, verification, iteration, optimization, and fabrication of parts and tools. Many new techniques of tooling have been and are being developed by using rapid fabricated parts. These are having a dramatic impact on both timing and costs throughout the automotive industry. One area that these methods can be utilized to their full potential is motorsports. Of particular interest is the growing use of bridge tooling to provide first article through production intent parts that promote cost effective changes.
Technical Paper

Intra-Parcel Collision Model for Diesel Spray Simulations

2008-10-06
2008-01-2426
Multidimensional models that are used for engine computations must include spray sub-models when the fuel is injected into the cylinder in liquid form. One of these spray sub-models is the droplet interaction model, which is separated into two parts: first, calculation of a collision rate between drops, and second, calculation of the outcome once a collision has occurred. This paper focuses on the problem of calculating the collision rate between drops accurately. Computing the collision rate between drops or particles when they are non-uniformly distributed and sharp gradients are present in their distribution is a challenging task. Traditionally the collisions between parcels of drops have been computed using the same spatial grid as is used for the Eulerian gas-phase calculations. Recently it has been proposed to use a secondary grid for the collision rate calculation that is independent of the gas-phase grid, as is done in the NTC collision algorithm.
X