Refine Your Search

Search Results

Viewing 1 to 13 of 13
Journal Article

The Effect of Viscosity Index on the Efficiency of Transmission Lubricants

2009-11-02
2009-01-2632
The world is firmly focused on reducing energy consumption and on increasingly stringent regulations on CO2 emissions. Examples of regulatory changes include the new United States Environmental Protection Agency's (U.S. EPA) fuel economy test procedures which were required beginning with the 2008 model year for vehicles sold in the US market. These test procedures include testing at higher speeds, more aggressive acceleration and deceleration, and hot-weather and cold-temperature testing. These revised procedures are intended to provide an estimate that more accurately reflects what consumers will experience under real world driving conditions. The U.S.
Journal Article

Optimization of an Advanced Combustion Strategy Towards 55% BTE for the Volvo SuperTruck Program

2017-03-28
2017-01-0723
This paper describes a novel design and verification process for analytical methods used in the development of advanced combustion strategies in internal combustion engines (ICE). The objective was to improve brake thermal efficiency (BTE) as part of the US Department of Energy SuperTruck program. The tools and methods herein discussed consider spray formation and injection schedule along with piston bowl design to optimize combustion efficiency, air utilization, heat transfer, emission, and BTE. The methodology uses a suite of tools to optimize engine performance, including 1D engine simulation, high-fidelity CFD, and lab-scale fluid mechanic experiments. First, a wide range of engine operating conditions are analyzed using 1-D engine simulations in GT Power to thoroughly define a baseline for the chosen advanced engine concept; secondly, an optimization and down-select step is completed where further improvements in engine geometries and spray configurations are considered.
Technical Paper

Development of Next-Generation Automatic Transmission Fluid Technology

2007-10-29
2007-01-3976
Global original equipment manufacturers (OEMs) have requested lower viscosity automatic transmission fluid (ATF) for use in conventional and 6-speed automatic transmissions (AT) to meet growing demands for improved fuel economy. While lower-viscosity ATF may provide better fuel economy by reducing churning losses, other key performance attributes must be considered when formulating lower viscosity ATF(1,2). Gear and bearing performance can be key concerns with lower-viscosity ATFs due to reduced film thickness at the surfaces. Long-term anti-shudder performance is also needed to enable the aggressive use of controlled slip torque converter clutches that permit better fuel economy. And, friction characteristics need to be improved for higher clutch holding capacity and good clutch engagement performance. This paper covers the development of next-generation, low-viscosity ATF technology, which provides optimum fuel economy along with wear and friction durability.
Technical Paper

Next Generation Torque Control Fluid Technology, Part IV: Using a New Split-μ Simulation Test for Optimizing Friction Material-Lubricant Hardware Systems

2010-10-25
2010-01-2230
Wet clutch friction devices are the primary means by which torque is transmitted through many of today's modern vehicle drivelines. These devices are used in automatic transmissions, torque vectoring devices, active on-demand vehicle stability systems and torque biasing differentials. As discussed in a previous SAE paper ( 2006-01-3271 - Next Generation Torque Control Fluid Technology, Part II: Split-Mu Screen Test Development) a testing tool was developed to correlate to full-vehicle split-mu testing for limited slip differential applications using a low speed SAE #2 friction test rig. The SAE #2 Split-Mu Simulation is a full clutch pack component level friction test. The purpose of this test is to allow optimization of the friction material-lubricant hardware system in order to deliver consistent friction performance over the life of the vehicle.
Technical Paper

Next Generation Torque Control Fluid Technology, Part III: Using an Improved Break-Away Friction Screen Test to Investigate Fundamental Friction Material-Lubricant Interactions

2010-10-25
2010-01-2231
Wet clutch friction devices are the primary means by which torque is transmitted in many of today's modern vehicle drivelines. These devices are used in automatic transmissions, torque vectoring devices, active on-demand vehicle stability systems, and torque biasing differentials. As discussed in a previous SAE paper ( 2006-01-3270 - Next Generation Torque Control Fluid Technology, Part I: Break-Away Friction Slip Screen Test Development), a testing tool was developed to simulate a limited slip differential break-away event using a Full Scale-Low Velocity Friction Apparatus (FS-LVFA). The purpose of this test was to investigate the fundamental interactions between lubricants and friction materials. The original break-away friction screen test, which used actual vehicle clutch plates and a single friction surface, proved a useful tool in screening new friction modifier technology.
Technical Paper

On Using Kriging Models as Probabilistic Models in Design

2004-03-08
2004-01-0430
Kriging models are frequently used as metamodels during system design optimization. In many applications, a kriging model is used as a deterministic model of a computationally expensive analysis or simulation. In this paper, a kriging model is employed as a probabilistic model on a one-dimensional and two two-dimensional test problems. A probabilistic model is a model in which the parameters are random variables resulting in a probability distribution of the output rather than a deterministic value. A probabilistic model can be used in design to quantify the knowledge designers have about a subsystem and the lack of knowledge or uncertainty in the model. Using a kriging model as a probabilistic model requires that the correlation of observations is only a function of the distance between the observations and that the observations have a Gaussian probability distribution.
Technical Paper

Using Cloud Point Depressants Opportunistically To Reduce No.2 Diesel Fuel Cloud Point Giveaway

2001-05-07
2001-01-1927
Diesel fuel is a blend of various middle distillate components separated at the refinery. The composition and characteristics of the diesel fuel blend changes daily if not hourly because of normal process variation, changing refinery processing conditions, changing crude oil diet or changing diesel fuel and kerosene market conditions. Regardless of the situation going on at the refinery or the market, the resultant diesel fuel must consistently meet established cloud point specifications. To consistently meet the cloud point specifications, refiners are forced to blend their diesel fuels in such a way that the resultant blend is always on the low side of the cloud point specification even when the refining process adversely changes the fuel characteristics. This practice has the effect of producing several degrees of cloud point “giveaway” when the refinery is not experiencing adverse swings in product quality.
Technical Paper

Review of Wet Friction Component Models for Automatic Transmission Shift Analysis

2003-05-05
2003-01-1665
In a step-ratio automatic transmission system, wet friction components are widely utilized to alter planetary gear configurations for automatic shifting. Thus, their engagement characteristics have a direct impact on shift quality or drivetrain NVH. A vehicle design process can benefit from predictive friction component models that allow analytical shift quality evaluation, leading to reduced development time. However, their practical application to shift analysis is seldom discussed in the literature although there are many references available for friction component modeling itself. A successful shift analysis requires a balance of model complexity, predictability and computational efficiency for a given objective. This paper reviews three types of friction component models found in today's open literature, namely, first principle based, algebraic, and empirical models. Model structure, assumptions, computational efficiency, and utilities are discussed.
Technical Paper

Extended-Drain ATF Field Testing in City Transit Buses

2003-05-19
2003-01-1985
City transit buses are a severe environment for an automatic transmission fluid. The fluid must endure very high operating temperatures because of the use of brake retarders, frequent stop-and-go driving, and numerous shifts. There is an increasing trend toward the use of extended-drain, synthetic-based ATFs for such severe service applications. This paper documents a field trial with both synthetic and petroleum-based ATFs at a large municipal bus fleet in Southern California. Three different commercial ATFs, made with either API Group 2, 3, or 4 base oils, respectively, were compared after roughly 80,000 km. and one year of operation. Because of different additive packages in each fluid, not all of the results can be explained by base oil effects alone. However, the base oil is certainly a dominant contributor to the finished fluid performance. The following four variables were monitored by used oil analysis: iron wear, copper wear, viscosity change, and acid number change.
Technical Paper

The Development of CVT Fluids with Higher Friction Coefficients

2003-05-19
2003-01-1978
The development of new transmission designs continues to affect the vehicle market. Continuously variable transmissions (CVTs) remain one of the more recent designs that impact the vehicle market. A desire for high belt-pulley capacity has driven studies concentrating on metal-on-metal (M/M) friction as a function of the CVT fluid. This paper describes the statistical techniques used to optimize the fluid friction as a function of additive components in a bench-scale, three-element test rig.
Technical Paper

Next Generation Torque Control Fluid Technology, Part II: Split-Mu Screening Test Development

2006-10-16
2006-01-3271
The popularity of SUVs and light trucks in North America, combined with the return to rear-wheel-drive cars globally, is significantly increasing the installation of torque control devices that improve vehicle stability and drivability. As with other driveline hardware, it is important to optimize the friction material-lubricant-hardware system to ensure that a torque control device provides consistent performance over the life of the vehicle. While there are many publications on friction tests relevant to automatic transmission fluids, the literature relating to torque control testing is not as well developed. In this paper, we will describe a split-mu vehicle test and the development of a split-mu screening test. The screening test uses the SAE#2 friction test rig and shows how results from this test align with those from actual vehicle testing.
Technical Paper

Next Generation Torque Control Fluid Technology, Part I: Break-Away Friction Screening Test Development

2006-10-16
2006-01-3270
The popularity of SUVs and light trucks in North America, combined with the return to rear-wheel-drive cars globally, is significantly increasing the installation rates of torque control devices that improve vehicle stability and drivability. As with other driveline hardware, it is important to optimize the friction material-lubricant-hardware system in order to ensure that a torque control device provides consistent performance over the life of the vehicle. While there are many publications on friction tests relevant to automatic transmission fluids, the literature relating to torque control testing is not as well developed. In this paper we will describe the development of a break-away friction screening test using a Full-Scale Low-Velocity Friction Apparatus (FS-LVFA). Additionally, we will illustrate how this screening test can be used to investigate the fundamental friction material-lubricant interactions that occur in continuously engaged limited slip differentials.
Technical Paper

Shifting from Automatic to Continuously Variable Transmissions: A Look at Fluid Technology Requirements

1999-10-25
1999-01-3614
New technologies are being commercialized across the automotive industry to address demands for improved fuel economy, emissions reductions, and improved customer satisfaction. Push-belt continuously variable transmissions (b-CVTs) are beginning to command a significant percentage of the market now dominated by manual and conventional automatic transmissions. In addition, automobile manufacturers plan to introduce the first traction drive toroidal-CVTs to the market place within the next five years. A review of the relative benefits and limitations of each of these automatic transmissions exists in the literature. In this paper we consider how the performance requirements of each of these automatic transmission systems impact automatic transmission fluid technology. The physical characteristics and screen test performance of two commercial ATFs, a b-CVTF, and two traction fluids were examined.
X