Refine Your Search

Topic

Search Results

Technical Paper

Influence of Micro Geometry Modification on Gear Dynamics

2020-04-14
2020-01-1323
Gearbox behavior is strictly affected by gears, shaft, bearings and casing stiffnesses. As a matter of fact, their contribution to gear dynamics is fundamental for mechanical transmissions design. In this paper a semi-analytical model developed for the estimation of the dynamic behavior of two mating gears is presented and tested on two case studies. Starting with the estimation of the Static Transmission Error, intended as the difference between the theoretical and actual angular position between the two mating gears, the dynamic behavior of the mating elements is estimated by means of a Dynamic Model. The Dynamic Model takes into account the gears, the contact between teeth exchanging loads and the other mechanical elements reduced by means of a DOF reduction technique. Based on the block-oriented approach, Dynamic Model allows the user to easily manage the complexity of the system with further or less elements by adding or removing DOFs.
Journal Article

Numerical Investigation on the Effects of Different Thermal Insulation Strategies for a Passenger Car Diesel Engine

2017-09-04
2017-24-0021
One of the key technologies for the improvement of the diesel engine thermal efficiency is the reduction of the engine heat transfer through the thermal insulation of the combustion chamber. This paper presents a numerical investigation on the effects of the combustion chamber insulation on the heat transfer, thermal efficiency and exhaust temperatures of a 1.6 l passenger car, turbo-charged diesel engine. First, the complete insulation of the engine components, like pistons, liner, firedeck and valves, has been simulated. This analysis has showed that the piston is the component with the greatest potential for the in-cylinder heat transfer reduction and for Brake Specific Fuel Consumption (BSFC) reduction, followed by firedeck, liner and valves. Afterwards, the study has been focused on the impact of different piston Thermal Barrier Coatings (TBCs) on heat transfer, performance and wall temperatures.
Technical Paper

An Objective Evaluation of the Comfort During the Gear Change Process

2007-04-16
2007-01-1584
This paper presents the methodology adopted by Politecnico di Torino Vehicle Dynamics Research Team to obtain objective indices for the evaluation of the comfort during the gear change process. Some test drivers and different passengers traveled on a test vehicle and assigned marks on the basis of their subjective feeling of comfort during the gearshifts. The comparison between the most significant subjective evaluations and the experimental values obtained by the instruments located on the vehicle is presented. As a consequence, some indices (based on physical parameters) to evaluate the efficiency and the comfort of the gearshift process are obtained. They are in good agreement with the subjective evaluations of the drivers and the passengers. The second part of the paper presents a driveline and vehicle model which was conceived to reproduce the phenomena experimented on the vehicle. The experimental validation of the model is presented.
Technical Paper

Gerotor Lubricating Oil Pump for IC Engines

1998-10-19
982689
This paper documents an extensive study aimed at a better understanding of the peculiarities and performance of crankshaft mounted gerotor pumps for IC engines lubrication. At different extents, the modelling, simulation and testing of a specific unit are all considered. More emphasis, at the modelling phase, is dedicated to the physical and mathematical description of the flow losses mechanisms; the often intricate aspects of kinematics being deliberately left aside. The pressure relief valve is analysed at a considerable extent as is the modelling of the working fluid, a typically aerated subsystem in such applications. Simulation is grounded on AMESim, a relatively novel tool in the fluid power domain, that proves effective and compliant with user deeds and objectives. Testing, at steady-state conditions, forms the basis for the pro!gressive tuning of the simulation model and provides significant insight into this type of volumetric pump.
Technical Paper

Fuel Cell Size and Weight Reduction Due to Innovative Metallic Bipolar Plates: Technical Process Details and Improvements

2009-04-20
2009-01-1009
In the automotive field the application of electric propulsion systems based on fuel cells requires a constant and continuing research of several optimized solutions, especially in terms of weight and size reduction. These key-factors tend to influence significantly the performance of the vehicle where the system is installed on. The main objective of the paper is to obtain breakthroughs in designing, manufacturing and assembling a fuel cell stack through the development of innovative metallic bipolar plates, that allows to set up high power density stacks, by lowering sensibly weight and size. The research activity carried out by the aforementioned authors is focused on the choice of suitable materials and the development of optimized tools, processes and techniques, in order to be able to move rapidly towards thinner bipolar plates, with new compact geometries that ensure the required stack output power.
Technical Paper

Gearbox Design by means of Genetic Algorithm and CAD/CAE Methodologies

2010-04-12
2010-01-0895
The paper discusses a gearbox design method based on an optimization algorithm coupled to a fully integrated tool to draw 3D virtual models, in order to verify both functionality and design. The aim of this activity is to explain how the state of the art of the gear design may be implemented through an optimization software for the geometrical parameters selection of helical gears of a manual transmission, starting from torque and speed time histories, the required set of gear ratios and the material properties. This approach can be useful in order to use either the experimental acquisitions or the simulation results to verify or design all of the single gear pairs that compose a gearbox. Genetic algorithm methods are applied to solve the optimization problems of gears design, due to their capabilities of managing objective functions discontinuous, non-differentiable, stochastic, or highly non-linear.
Technical Paper

Development and Application of an Advanced Numerical Model for CR Piezo Indirect Acting Injection Systems

2010-05-05
2010-01-1503
A numerical model for simulating a Common Rail Piezo Indirect Acting fuel injection-system under steady state as well as transient operating conditions was developed using a commercial code. A 1D flow model of the main hydraulic system components, including the rail, the rail to injector connecting pipe and the injector, was applied in order to predict the influence of the injector layout and of each part of the hydraulic circuit on the injection system performance. The numerical code was validated through the comparison of the numerical results with experimental data obtained on a high performance test bench of the Moehwald-Bosch MEP2000/ CA4000 type. The developed injection-system mathematical model was applied to the analysis of transient flows in the hydraulic circuit paying specific attention to the fluid dynamics internal to the injector.
Technical Paper

Energy Consumption in ICE Lubricating Gear Pumps

2010-10-25
2010-01-2146
Scope of this work is the analysis of the energy consumed by lubricating gear pumps for automotive applications during a driving cycle. This paper presents the lumped parameter simulation model of gerotor lubricating pumps and the comparison between numerical outcomes and experimental results. The model evaluates the power required to drive the pump and the cumulative energy consumed in the driving cycle. The influence of temperature variations on leakage flows, viscous friction torque and lubricating circuit permeability is taken into account. The simulation model has been validated by means of a test rig for hydraulic pumps able to reproduce the typical speed, temperature and load profiles during a NEDC driving cycle. Experimental tests, performed on a crankshaft mounted pump for diesel engines, have confirmed a good matching with the simulation model predictions in terms of instantaneous quantities and overall energy consumption.
Technical Paper

Displacement vs Flow Control in IC Engines Lubricating Pumps

2004-03-08
2004-01-1602
Scope of this work is to analyse potentials in terms of efficiency of two pump units belonging to two families: the first intervening on the maximum volume generated by variable volume chambers (e.g. a vane pump where eccentricity is varied), the second that changes the quantity of fluid being sucked or delivered (e.g. a gear pump with variable timing). In more detail the comparison will be established between a vane pump where displacement is varied through eccentricity and an internal gear pump of Gerotor type where flow rate is controlled through a rotating sector that alters the effective geometry of kidney ports. A detailed simulation of the two solutions brings to evidence the advantages of the first approach with respect to the second as confirmed by experimental investigations.
Technical Paper

Modelling and Simulation of Variable Displacement Vane Pumps for IC Engine Lubrication

2004-03-08
2004-01-1601
The paper presents geometric, kinematic and fluid-dynamic modelling of variable displacement vane pumps for low pressure applications in internal combustion engines lubrication. All these fundamental aspects are integrated in a simulation environment and form the core of a design tool leading to the assessment of performance, critical issues, related influences and possible solutions in a well grounded engineering support to decision.
Technical Paper

FEM and Experimental Analysis of Industrial Forming Processes

2001-10-01
2001-01-3218
This paper deals with implementing process simulation in the developing of the manufacturing process for automobile panels and body parts. Starting from FEM analysis of material behaviour, suggestions about punch and die design can be obtained bringing direct and indirect benefits to other routing steps, thus saving time and resources. In order to point out these relationship and enhance these benefits, some real cases are presented and analysed for which a comparison among simulated and experimental results is given, using both circle grid and thickness analysis of the deformed blank sheet. Suggestions for part design modifications have been obtained that lead to a net improvement in formability and quality.
Technical Paper

Effects of Different Geometries of the Cylinder Head on the Combustion Characteristics of a VVA Gasoline Engine

2013-09-08
2013-24-0057
Two different modifications of the baseline cylinder head configuration have been designed and experimentally tested on a MultiAir turbocharged gasoline engine, in order to address the issue of the poor in-cylinder turbulence levels which are typical of the Early-Intake-Valve-Closing (EIVC) strategies which are adopted in Variable Valve Actuation systems at part load to reduce pumping losses. The first layout promotes turbulence by increasing the tumble motion at low valve lifts, while the second one allows the addition of a swirl vortex to the main tumble structure. The aim for both designs was to achieve a proper flame propagation speed at both part and full load. The experimental activity was initially focused on the part load analysis under high dilution of the mixture with internal EGR, which can allow significant further reductions in terms of pumping losses but, on the other hand, tends to adversely affect combustion stability and to increase cycle-to-cycle variations.
Technical Paper

Methodology and Application on Load Monitoring Using Strain-Gauged Bolts in Brake Calipers

2022-03-29
2022-01-0922
As technology evolves, the number of sensors and available data on vehicles grow exponentially. In this context, it is essential to use sensors for monitoring key components, increasing safety and reliability, and gathering data useful for mechanical dimensioning and control systems. This paper presents an application of strain-gauged bolts on brake calipers fixation of two electric vehicles. With this approach it was possible to evaluate the loads applied to the brake pads fixation zone and correlate them with braking behavior, therefore gaining insights on braking conditions and system state for an improved braking function control. The goal of the study is analyzing the strengths and limitations of the method and proposing developments to deploy it in real applications. This is particularly important and novel for electric vehicles, where powertrains can create positive/negative torques and generate complex interactions with braking system.
Technical Paper

Linear Approach to ESP Control Logic Design

2006-04-03
2006-01-1017
An Electronic Stability Program (ESP) control logic is designed. It is devoted to stabilize vehicle during cornering maneuvers. The aim of the activity is to obtain a feed forward (FF) control structure, capable of better performance than a previously developed closed loop one. The efficiency of ESP intervention is determined observing yaw rate peak reduction and oscillation damping time during step steer maneuver, together with vehicle side slip angle containment and longitudinal speed loss. A single track vehicle model is used to obtain two transfer functions describing vehicle and active system behavior. A third transfer function is derived from active vehicle frequency response that is the designer's target. The interaction between the transfer functions permits to design a feed forward control logic, which is then merged in a closed loop control structure in order to ensure fail safe conditions and control robustness.
Technical Paper

A Methodology to Investigate the Dynamic Characteristics of ESP and EHB Hydraulic Units

2006-04-03
2006-01-1281
The paper deals with the Hardware-In-the-Loop based methodology which was adopted to evaluate the dynamic characteristics of Electronic Stability Program (ESP) and Electro-Hydraulic Brake (EHB) components. Firstly, it permits the identification of the time delays due to the hardware of the actuation system. Secondly, the link between the hardware of the hydraulic unit and a vehicle model running in real time permits the objective evaluation of the performance induced by the single components of different hydraulic units in terms of vehicle dynamics. The paper suggests the main parameters and tests which can help the car manufacturer in evaluating ESP hydraulic units, without expensive road tests.
Technical Paper

Numerical and Experimental Analysis of Exhaust Manifold Gasket

2006-04-03
2006-01-1210
The paper presents experimental investigation and numerical simulation of a commercial exhaust manifold gasket. Non-linearities in geometric and material behavior make exhaust manifold gasket modeling quite complicated. In the paper, two different FE modeling techniques are compared in order to suggest the best modeling way. Experimental data are collected in order to validate the numerical models. Differences between the two modeling techniques are emphasized and a choice criterion is suggested.
Technical Paper

Effects of Timing and Odd/Even Number of Teeth on Noise Generation of Gerotor Lubricating Pumps for IC Engines

2000-09-11
2000-01-2630
The paper presents experimental and theoretical investigations on a shaft mounted gerotor lubricating pump aimed at reducing radiated noise at high engine speed. Effects of noise generation identified as main sources are the fluid borne noise (FBN) that originates in unsteady flow and related pressure fluctuations and structure borne noise (SBN) as a result of pressure transients occurring internally, which cause vibrations of the pump case. To clarify the onset of large delivery pressure fluctuations detected at high pump speed (in excess of 4000 rpm), and validate simulation results (AMESim environment), experimental and theoretical studies have been performed.
Technical Paper

Modelling and Simulation of Gerotor Gearing in Lubricating Oil Pumps

1999-03-01
1999-01-0626
The paper presents geometric and kinematic aspects that constitute a premise to the modelling and simulation of gerotor lubricating oil pumps. With reference to a commercial oil pump two different modelling approaches of the pumping elements are addressed: the classical integral-derivative approach and the new derivative-integral approach. The latter, based on volumes swept by vector rays, is easier to implement and requires less computer time at equal accuracy. Two approaches to modelling are also detailed that feature different reticulations of the pump and consequently involve a different number of ordinary differential equations (ODE). Depending on the extent and detail of expected informations, either 4 or N+2 ODE must be solved, N being the number of variable volume chambers in the pump. Finally, numerical results of the simulation code, developed in the AMESim environment, have been compared with experimental results presented elsewhere [4].
Technical Paper

Delivery-Valve Effects on the Performance of an Automotive Diesel Fuel-Injection System

1999-03-01
1999-01-0914
An integrated theoretical and experimental investigation was carried out in order to evaluate the effects that the pump delivery-valve assembly can produce on the performance of a pump-line-nozzle fuel-injection system with a distributor-type pump for automotive diesel engines. Four distinct delivery valves, one constant-pressure valve, one reflux-hole and two relief-volume valves, were separately fitted to the pump and for each configuration of the delivery assembly the system behavior was analyzed under full-load steady-state operations in a wide pump angular-speed range. Fuel injection-rate as well as local pressure time-histories were investigated, paying specific attention to the occurrence and temporal evolution of cavitation phenomena in the pressure pipe and injector nozzle, after the valve closure. The flow across the delivery-valve assembly was theoretically examined in order to ascertain any instability sources as possible causes of cyclic fluctuations.
Technical Paper

Numerical Assessment of the CO2 Reduction Potential of Variable Valve Actuation on a Light Duty Diesel Engine

2018-05-30
2018-37-0006
The increasingly demanding targets in terms of CO2 reduction lead to the adoption of engine technologies left so far for innovation. In diesel engines, some of the primary interests in adopting an advanced air management system, as Variable Valve Actuation (VVA), are related to Miller cycle enabling, and valve timing optimization. In this context, a numerical study was carried out in order to evaluate the impact of VVA on passenger car 4-cylinder diesel engine, 1.6 liters. The engine model, developed in GT-SUITE, features a predictive combustion model (DIPulse) and it is coupled with a fully predictive fuel injector model for the simulation of complex injection patterns. 3 different VVA techniques were evaluated, all targeting CO2 reduction: Late Exhaust Valve Opening (LEVO), Exhaust Phasing, and Late Inlet Valve Closure (LIVC) for enabling Miller cycle.
X