Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

Real-Time Optimal Energy Management of Heavy Duty Hybrid Electric Vehicles

2013-04-08
2013-01-1748
The performance of energy flow management strategies is essential for the success of hybrid electric vehicles (HEVs), which are considered amongst the most promising solutions for improving fuel economy as well as reducing exhaust emissions. The heavy duty HEVs engaged in cycles characterized by start-stop configuration has attracted widely interests, especially in off-road applications. In this paper, a fuzzy equivalent consumption minimization strategy (F-ECMS) is proposed as an intelligent real-time energy management solution for heavy duty HEVs. The online optimization problem is formulated as minimizing a cost function, in terms of weighted fuel power and electrical power. A fuzzy rule-based approach is applied on the weight tuning within the cost function, with respect to the variations of the battery state-of-charge (SOC) and elapsed time.
Journal Article

Assessment of a New Quasi-Dimensional Multizone Combustion Model for the Spray and Soot Formation Analysis in an Optical Single Cylinder Diesel Engine

2013-09-08
2013-24-0044
An innovative quasi-dimensional multizone combustion model for the spray formation, combustion and emission formation analysis in DI diesel engines was assessed and applied to an optical single cylinder engine. The model, which has been recently presented by the authors, integrates a predictive non stationary 1D spray model developed by the Sandia National Laboratory, with a diagnostic multizone thermodynamic model. The 1D spray model is capable of predicting the equivalence ratio of the fuel during the mixing process, as well as the spray penetration. The multizone approach is based on the application of the mass and energy conservation laws to several homogeneous zones identified in the combustion chamber. A specific submodel is also implemented to simulate the dilution of the burned gases. Soot formation is modeled by an expression which derives from Kitamura et al.'s results, in which an explicit dependence on the local equivalence ratio is considered.
Technical Paper

Impact of Mode Shapes on Experimental Loss Factor Estimation in Automotive Joints

2021-08-31
2021-01-1110
This paper presents the experimental work carried out on single-lap joints fastened together with bolts and nuts to investigate the contribution of mode shapes, and the effect that bolt sizes has in dissipating energy in built-up structures. Five different bolt sizes are chosen to assemble five single-bolted single-lap joints using aluminum plates. An analogous monolithic solid piece carved from the same aluminum material is used to determine the material damping and compare it against the damping from bolted joints. The dynamic response of all structures is captured under free-free boundary conditions, and the common modes are analyzed to understand the contribution and primary source of damping in the same range of the sampling frequency.
Technical Paper

Modular Transmission Family for Fuel Consumption Reduction Tailored for Indian Market Needs

2021-09-22
2021-26-0049
Global warming is the driver for introduction of CO2 and fuel consumption legislation worldwide. Indian truck manufacturers are facing the introduction of Indian fuel efficiency norms. In the European Union the CO2 emission monitoring phase of the most relevant truck classes was completed in June 2020 by usage of the Vehicle Energy Consumption Calculation TOol VECTO. Indian rule makers are currently considering an adaptation of VECTO for the usage in India, too. Indian truck market has always been very cost sensitive. Introduction of Bharat Stage VI Phase I has already led to a significant cost increase for emission compliance. Therefore, it will be of vital importance to keep the additional product costs for achievement of future fuel consumption legislation as low as possible as long as the real-world operation will not be promoted by the government.
Technical Paper

Multitarget Evaluation of Hybrid Electric Vehicle Powertrain Architectures Considering Fuel Economy and Battery Lifetime

2020-06-30
2020-37-0015
Hybrid electric vehicle (HEV) powertrains are characterized by a complex design environment as a result of both the large number of possible layouts and the need for dedicated energy management strategies. When selecting the most suitable hybrid powertrain architecture at an early design stage of HEVs, engineers usually focus solely on fuel economy (directly linked to tailpipe emissions) and vehicle drivability performance. However, high voltage batteries are a crucial component of HEVs as well in terms of performance and cost. This paper introduces a multitarget assessment framework for HEV powertrain architectures which considers both fuel economy and battery lifetime. A multi-objective formulation of dynamic programming is initially presented as an off-line optimal HEV energy management strategy capable of predicting both fuel economy performance and battery lifetime of HEV powertrain layout options.
Journal Article

Spray and Soot Formation Analysis by Means of a Quasi-Dimensional Multizone Model in a Single Cylinder Diesel Engine under Euro 4 Operating Conditions

2015-09-06
2015-24-2416
An investigation has been carried out on the spray penetration and soot formation processes in a research diesel engine by means of a quasi-dimensional multizone combustion model. The model integrates a predictive non stationary 1D spray model developed by the Sandia National Laboratory, with a diagnostic multizone thermodynamic model, and is capable of predicting the spray formation, combustion and soot formation processes in the combustion chamber. The multizone model was used to analyze three operating conditions, i.e., a zero load point (BMEP = 0 bar at 1000 rpm), a medium load point (BMEP = 5 bar at 2000 rpm) and a medium-high load point (BMEP = 10 bar at 2000 rpm). These conditions were experimentally tested in an optical single cylinder engine with the combustion system configuration of a 2.0L Euro4 GM diesel engine for passenger car applications.
Journal Article

Improved Modeling of Near-Wall Heat Transport for Cooling of Electric and Hybrid Powertrain Components by High Prandtl Number Flow

2017-03-28
2017-01-0621
Reynolds-averaged Navier-Stokes (RANS) computations of heat transfer involving wall bounded flows at elevated Prandtl numbers typically suffer from a lack of accuracy and/or increased mesh dependency. This can be often attributed to an improper near-wall turbulence modeling and the deficiency of the wall heat transfer models (based on the so called P-functions) that do not properly account for the variation of the turbulent Prandtl number in the wall proximity (y+< 5). As the conductive sub-layer gets significantly thinner than the viscous velocity sub-layer (for Pr >1), treatment of the thermal buffer layer gains importance as well. Various hybrid strategies utilize blending functions dependent on the molecular Prandtl number, which do not necessarily provide a smooth transition from the viscous/conductive sub-layer to the logarithmic region.
Journal Article

A Drag Coefficient for Test Cycle Application

2018-04-03
2018-01-0742
The drag coefficient at zero yaw angle is the single parameter usually used to define the aerodynamic drag characteristics of a passenger car. However, this is usually the minimum drag condition and will, for example, lead to an underestimate of the effect of aerodynamic drag on fuel consumption because the important influence of the natural wind has been excluded. An alternative measure of aerodynamic drag should take into account the effect of nonzero yaw angles and a variant of wind-averaged drag is suggested as the best option. A wind-averaged drag coefficient (CDW) is usually derived for a particular vehicle speed using a representative wind speed distribution. In the particular case where the road speed distribution is specified, as for a drive cycle to determine fuel economy, a relevant drag coefficient can be derived by using a weighted road speed.
Journal Article

Active Tire Pressure Control (ATPC) for Passenger Cars: Design, Performance, and Analysis of the Potential Fuel Economy Improvement

2018-04-03
2018-01-1340
Active tire pressure control (ATPC) is an automatic central tire inflation system (CTIS), designed, prototyped, and tested at the Politecnico di Torino, which is aimed at improving the fuel consumption, safety, and drivability of passenger vehicles. The pneumatic layout of the system and the designed solution for on board integration are presented. The critical design choices are explained in detail and supported by experimental evidence. In particular, the results of experimental tests, including the characterizations of various pneumatic components in working conditions, have been exploited to obtain a design, which allows reliable performance of the system in a lightweight solution. The complete system has been tested to verify its dynamics, in terms of actuation time needed to obtain a desired pressure variation, starting from the current tire pressure, and to validate the design.
Journal Article

The Study of a Bi-Stable Wake Region of a Generic Squareback Vehicle using Tomographic PIV

2016-04-05
2016-01-1610
This paper demonstrates the use of large scale tomographic PIV to study the wake region of a Windsor model. This forms part of a larger study intending to understand the mechanisms that drive drag force changes when rear end optimizations are applied. For the first time, tomographic PIV has been applied to a large airflow volume (0.125m3, 500 x 500 x 500mm), which is of sufficient size to capture the near wake of a 25% scale Windsor model in a single measurement. The measurement volume is illuminated using a 200mJ double pulsed Nd:Yag laser fitted with a volume optic and seeded with 300μm helium filled soap bubbles generated by a novel high output seeder. Images were captured using four 4M Pixel LaVision cameras. The tomographic results are shown to produce high quality data with the setup used, but further improvements and tests at higher Reynolds number could be conducted if an additional seeding rake was used to increase seeding density.
Journal Article

Numerical and Experimental Assessment of a Solenoid Common-Rail Injector Operation with Advanced Injection Strategies

2016-04-05
2016-01-0563
The selection and tuning of the Fuel Injection System (FIS) are among the most critical tasks for the automotive diesel engine design engineers. In fact, the injection strongly affects the combustion phenomena through which controlling a wide range of related issues such as pollutant emissions, combustion noise and fuel efficiency becomes feasible. In the scope of the engine design optimization, the simulation is an efficient tool in order to both predict the key performance parameters of the FIS, and to reduce the amount of experiments needed to reach the final product configuration. In this work a complete characterization of a solenoid ballistic injector for a Light-Duty Common Rail system was therefore implemented in a commercially available one-dimensional computational software called GT-SUITE. The main phenomena governing the injector operation were simulated by means of three sub-models (electro-magnetic, hydraulic and mechanical).
Journal Article

Design and Optimisation of the Propulsion Control Strategy for a Pneumatic Hybrid City Bus

2016-04-05
2016-01-1175
A control strategy has been designed for a city bus equipped with a pneumatic hybrid propulsion system. The control system design is based on the precise management of energy flows during both energy storage and regeneration. Energy recovered from the braking process is stored in the form of compressed air that is redeployed for engine start and to supplement the engine air supply during vehicle acceleration. Operation modes are changed dynamically and the energy distribution is controlled to realize three principal functions: Stop-Start, Boost and Regenerative Braking. A forward facing simulation model facilitates an analysis of the vehicle dynamic performance, engine transient response, fuel economy and energy usage.
Journal Article

The Effect of a Sheared Crosswind Flow on Car Aerodynamics

2017-03-28
2017-01-1536
In the wind tunnel the effect of a wind input on the aerodynamic characteristics of any road vehicle is simulated by yawing the vehicle. This represents a wind input where the wind velocity is constant with height above the ground. In reality the natural wind is a boundary layer flow and is sheared so that the wind velocity will vary with height. A CFD simulation has been conducted to compare the aerodynamic characteristics of a DrivAer model, in fastback and squareback form, subject to a crosswind flow, with and without shear. The yaw simulation has been carried out at a yaw angle of 10° and with one shear flow exponent. It is shown that the car experiences almost identical forces and moments in the two cases when the mass flow in the crosswind over the height of the car is similar. Load distributions are presented for the two cases. The implications for wind averaged drag are discussed.
Journal Article

Experimental and Numerical Assessment of Multi-Event Injection Strategies in a Solenoid Common-Rail Injector

2017-09-04
2017-24-0012
Nowadays, injection rate shaping and multi-pilot events can help to improve fuel efficiency, combustion noise and pollutant emissions in diesel engine, providing high flexibility in the shape of the injection that allows combustion process control. Different strategies can be used in order to obtain the required flexibility in the rate, such as very close pilot injections with almost zero Dwell Time or boot shaped injections with optional pilot injections. Modern Common-Rail Fuel Injection Systems (FIS) should be able to provide these innovative patterns to control the combustion phases intensity for optimal tradeoff between fuel consumption and emission levels.
Technical Paper

Parametric Study of Reduced Span Side Tapering on a Simplified Model with Wheels

2020-04-14
2020-01-0680
Many modern vehicles have blunt rear end geometries for design aesthetics and practicality; however, such vehicles are potentially high drag. The application of tapering; typically applied to an entire edge of the base of the geometry is widely reported as a means of reducing drag, but in many cases, this is not practical on real vehicles. In this study side tapers are applied to only part of the side edge of a simplified automotive geometry, to show the effects of practical implementations of tapers. The paper reports on a parametric study undertaken in Loughborough University’s Large Wind Tunnel with the ¼ scale Windsor model equipped with wheels. The aerodynamic effect of implementing partial side edge tapers is assessed from a full height taper to a 25% taper in both an upper and lower body configuration. These were investigated using force and moment coefficients, pressure measurements and planar particle image velocimetry (PIV).
Technical Paper

A McPherson Lightweight Suspension Arm

2020-04-14
2020-01-0772
The paper deals with the design and manufacturing of a McPherson suspension arm made from short glass fiber reinforced polyamide (PA66). The design of the arm and the design of the molds have been made jointly. According to Industry 4.0 paradigms, a full digitalization of both the product and process has been performed. Since the mechanical behavior of the suspension arm strongly depends on constraints which are difficult to be modelled, a simpler structure with well-defined mechanical constraints has been developed. By means of such simple structure, the model for the behavior of the material has been validated. Since the suspension arm is a hybrid structure, the associated simple structure is hybrid as well, featuring a metal sheet with over-molded polymer. The issues referring to material flow, material to material contact, weld lines, fatigue strength, high and low temperature behavior, creep, dynamic strength have been investigated on the simple structure.
Technical Paper

A Dynamic Programming Algorithm for HEV Powertrains Using Battery Power as State Variable

2020-04-14
2020-01-0271
One of the first steps in powertrain design is to assess its best performance and consumption in a virtual phase. Regarding hybrid electric vehicles (HEVs), it is important to define the best mode profile through a cycle in order to maximize fuel economy. To assist in that task, several off-line optimization algorithms were developed, with Dynamic Programming (DP) being the most common one. The DP algorithm generates the control actions that will result in the most optimal fuel economy of the powertrain for a known driving cycle. Although this method results in the global optimum behavior, the DP tool comes with a high computational cost. The charge-sustaining requirement and the necessity of capturing extremely small variations in the battery state of charge (SOC) makes this state vector an enormous variable. As things move fast in the industry, a rapid tool with the same performance is required.
Technical Paper

An Iterative Histogram-Based Optimization of Calibration Tables in a Powertrain Controller

2020-04-14
2020-01-0266
To comply with the stringent fuel consumption requirements, many automobile manufacturers have launched vehicle electrification programs which are representing a paradigm shift in vehicle design. Looking specifically at powertrain calibration, optimization approaches were developed to help the decision-making process in the powertrain control. Due to computational power limitations the most common approach is still the use of powertrain calibration tables in a rule-based controller. This is true despite the fact that the most common manual tuning can be quite long and exhausting, and with the optimal consumption behavior rarely being achieved. The present work proposes a simulation tool that has the objective to automate the process of tuning a calibration table in a powertrain model. To achieve that, it is first necessary to define the optimal reference performance.
Technical Paper

A holistic Development Method Based on AVL FRISC as Enabler for CO2 Reduction with Focus on Low Viscosity Oils

2020-04-14
2020-01-1060
To achieve future fleet CO2 emission targets, all powertrain types, including those with internal combustion engines, need to achieve higher efficiency. Next to others the reduction of friction is one contributor to increase powertrain efficiency. The piston bore interface (PBI) accounts for up to 50 % of the total engine friction losses [1]. Optimizations in this area combined with the use of low viscosity oil, which can reduce the friction of further engine sub-systems, will therefore have a high positive impact. To assess the friction of the PBI whilst considering cross effects of other relevant parameters for mechanical function (e.g. blow-by & wear) and emissions (e.g. oil consumption) AVL has established a holistic development method based around the AVL FRISC (FRIction Single Cylinder) engine with a floating liner measurement concept.
Technical Paper

Streamlined Tails - The Effects of Truncation on Aerodynamic Drag

2020-04-14
2020-01-0673
Significant aerodynamic drag reduction is obtained on a bluff body by tapering the rear body. In the 1930’s it was found that a practical low drag car body could be achieved by cutting off the tail of a streamlined shape. The rear end of a car with a truncated tail is commonly referred to as a Kamm back. It has often been interpreted as implying that the drag of this type of body is almost the same as that for a fully streamlined shape. From a review of the limited research into truncated streamlined tails it is shown in this paper that, while true for some near axisymmetric bodies, it is not the case for many more car-like shapes. For these shapes the drag reduction from an elongated tail varies almost linearly with the reduction in cross section area. A CFD simulation to determine the drag reduction from a truncated streamlined tail of variable length on the simple Windsor Body is shown by way of confirmation.
X