Refine Your Search

Topic

Author

Search Results

Technical Paper

A Comparison of Componentization Constructs for Supporting Modularity in Simulink

2020-04-14
2020-01-1290
The Model-Based Development (MBD) paradigm is widely used for embedded controls development, with the MathWorks Simulink modelling environment being extensively used in the automotive industry. As production-scale Simulink models are typically large and complex, there exists a need to decompose them properly in order to facilitate their maintainability, understandability, and evolution. MathWorks recommends the use of three constructs for model “componentization” or decomposition: the Subsystem, Library, and Model Reference. However, a recently added construct introduced in Simulink R2014b, the Simulink Function, can also be used for this purpose, while also supporting information hiding due to the construct’s ability to be scoped and encapsulate data.
Technical Paper

A Methodology for Automotive Steel Wheel Life Assessment

2020-04-14
2020-01-1240
A methodology for an efficient failure prediction of automotive steel wheels during fatigue experimental tests is proposed. The strategy joins the CDTire simulative package effectiveness to a specific wheel finite element model in order to deeply monitor the stress distribution among the component to predict damage. The numerical model acts as a Software-in-the-loop and it is calibrated with experimental data. The developed tool, called VirtualWheel, can be applied for the optimisation of design reducing prototyping and experimental test costs in the development phase. In the first section, the failure criterion is selected. In the second one, the conversion of hardware test-rig into virtual model is described in detail by focusing on critical aspects of finite element modelling. In conclusion, failure prediction is compared with experimental test results.
Technical Paper

A McPherson Lightweight Suspension Arm

2020-04-14
2020-01-0772
The paper deals with the design and manufacturing of a McPherson suspension arm made from short glass fiber reinforced polyamide (PA66). The design of the arm and the design of the molds have been made jointly. According to Industry 4.0 paradigms, a full digitalization of both the product and process has been performed. Since the mechanical behavior of the suspension arm strongly depends on constraints which are difficult to be modelled, a simpler structure with well-defined mechanical constraints has been developed. By means of such simple structure, the model for the behavior of the material has been validated. Since the suspension arm is a hybrid structure, the associated simple structure is hybrid as well, featuring a metal sheet with over-molded polymer. The issues referring to material flow, material to material contact, weld lines, fatigue strength, high and low temperature behavior, creep, dynamic strength have been investigated on the simple structure.
Journal Article

Optimization of Electrified Powertrains for City Cars

2012-06-01
2011-01-2451
Sustainable and energy-efficient consumption is a main concern in contemporary society. Driven by more stringent international requirements, automobile manufacturers have shifted the focus of development into new technologies such as Hybrid Electric Vehicles (HEVs). These powertrains offer significant improvements in the efficiency of the propulsion system compared to conventional vehicles, but they also lead to higher complexities in the design process and in the control strategy. In order to obtain an optimum powertrain configuration, each component has to be laid out considering the best powertrain efficiency. With such a perspective, a simulation study was performed for the purpose of minimizing well-to-wheel CO2 emissions of a city car through electrification. Three different innovative systems, a Series Hybrid Electric Vehicle (SHEV), a Mixed Hybrid Electric Vehicle (MHEV) and a Battery Electric Vehicle (BEV) were compared to a conventional one.
Technical Paper

Optimization of a Variable Geometry Exhaust System Through Design of Experiment

2008-04-14
2008-01-0675
Experimental Design methodologies have been applied in conjunction with objective functions for the optimization of the internal geometry of a rear muffler of a subcompact car equipped with a 1.4 liters displacement s.i. turbocharged engine. The muffler also features an innovative variable geometry design. The definition of an objective function summarising the silencing capability of the muffler has been driving the optimization process with the aim to reduce the tailpipe noise while maintaining acceptable pressure losses and complying with severe space constraints. Design of Experiments techniques for the reduction of experimental plans have been shown to be extremely effective to find out the optimum values of the design parameters, allowing a remarkable reduction of the time required by the design process in comparison with full factorial designs.
Technical Paper

Fuel Cell Size and Weight Reduction Due to Innovative Metallic Bipolar Plates: Technical Process Details and Improvements

2009-04-20
2009-01-1009
In the automotive field the application of electric propulsion systems based on fuel cells requires a constant and continuing research of several optimized solutions, especially in terms of weight and size reduction. These key-factors tend to influence significantly the performance of the vehicle where the system is installed on. The main objective of the paper is to obtain breakthroughs in designing, manufacturing and assembling a fuel cell stack through the development of innovative metallic bipolar plates, that allows to set up high power density stacks, by lowering sensibly weight and size. The research activity carried out by the aforementioned authors is focused on the choice of suitable materials and the development of optimized tools, processes and techniques, in order to be able to move rapidly towards thinner bipolar plates, with new compact geometries that ensure the required stack output power.
Technical Paper

Gearbox Design by means of Genetic Algorithm and CAD/CAE Methodologies

2010-04-12
2010-01-0895
The paper discusses a gearbox design method based on an optimization algorithm coupled to a fully integrated tool to draw 3D virtual models, in order to verify both functionality and design. The aim of this activity is to explain how the state of the art of the gear design may be implemented through an optimization software for the geometrical parameters selection of helical gears of a manual transmission, starting from torque and speed time histories, the required set of gear ratios and the material properties. This approach can be useful in order to use either the experimental acquisitions or the simulation results to verify or design all of the single gear pairs that compose a gearbox. Genetic algorithm methods are applied to solve the optimization problems of gears design, due to their capabilities of managing objective functions discontinuous, non-differentiable, stochastic, or highly non-linear.
Technical Paper

Multifunctional System for Trace Gas Contaminants Removal

2009-07-12
2009-01-2525
The Atmospheric Revitalization System (ARS) provides carbon dioxide removal, trace contaminant control, and gas constituent analysis. In this field, the interest of RecycLAB [5], the TAS-I Advanced Live Support Research & Development laboratory is directed to trace gas contaminants removal and monitoring. During manned space mission, the decontamination of cabin or rack air after contingency events such as fire or pyrolysis is a priority for the crew safety. In this paper, basic zeolites, obtained by impregnation of common zeolites with a basic oxide, are used to remove acid gas contaminants from air stream. A multi-functional system, able to accommodate reactors of different shape, characteristics and set-up, is used at this purpose. This breadboard, called ZEUS (Zeolites for an Environmental-control Unit in Space), is made of AISI 316L stainless steel and consists of a closed loop, in which the inner volume is completely isolated from the external environment.
Technical Paper

A Proposal of an Oil Pan Optimization Methodology

2010-04-12
2010-01-0417
In the powertrain technology, designers must be careful on oil pan design in order to obtain the best noise, vibration and harshness (NVH) performance. This is a great issue for the automotive design because they affect the passengers' comfort. In order to reduce vibration and radiated noise in powertrain assembly, oil pan is one of the most critical components. The high stiffness of the oil pan permits to move up the natural modes of the component and, as a consequence, reduce the sound emission of the component itself. In addition, the optimized shape of the component allows the increase of natural frequency values of the engine assembly. The aim of this study is the development of a methodology to increase the oil pan stiffness starting from a sketch of the component and adding material where it is needed. The methodology is tested on a series of different models: they have the same geometry but different materials.
Technical Paper

FEM and Experimental Analysis of Industrial Forming Processes

2001-10-01
2001-01-3218
This paper deals with implementing process simulation in the developing of the manufacturing process for automobile panels and body parts. Starting from FEM analysis of material behaviour, suggestions about punch and die design can be obtained bringing direct and indirect benefits to other routing steps, thus saving time and resources. In order to point out these relationship and enhance these benefits, some real cases are presented and analysed for which a comparison among simulated and experimental results is given, using both circle grid and thickness analysis of the deformed blank sheet. Suggestions for part design modifications have been obtained that lead to a net improvement in formability and quality.
Technical Paper

Efficient Procedure for Robust Optimal Design of Aerospace Laminated Structures

2017-09-19
2017-01-2058
Innovative aircraft design studies have noted that uncertainty effects could become significant and greatly emphasized during the conceptual design phases due to the scarcity of information about the new aero-structure being designed. The introduction of these effects in design methodologies are strongly recommended in order to perform a consistent evaluation of structural integrity. The benefit to run a Robust Optimization is the opportunity to take into account uncertainties inside the optimization process obtaining a set of robust solutions. A major drawback of performing Robust Multi-Objective Optimization is the computational time required. The proposed research focus on the reduction of the computational time using mathematic and computational techniques. In the paper, a generalized approach to operate a Robust Multi-Objective Optimization (RMOO) for Aerospace structure using MSC software Patran/Nastran to evaluate the Objectives Function, is proposed.
Technical Paper

Integrated CAD/CAE Functional Design for Engine Components and Assembly

2011-04-12
2011-01-1071
In the present paper, starting from a first attempt design of engine components, a CAD/CAE integrated approach for designing engine is proposed. As first step, some typological quantities are setting in order to define the designed engine, for example the number of cylinders, displacements, thermodynamic cycle and geometrical constraints. Using literature approach and tailored design methodologies, the developed software provides the geometric parameters of the main engine components: crankshaft, piston, wrist pin, connecting rod, bedplate, engine block, cylinder head, bearings, valvetrain. Form the geometrical parameters, the developed software, using 3D CAD parametric models, defines a first functional model of each component and of their mutual interactions. Then a numerical analysis can be evaluated and it provides important feedback result for design targets. In the paper the particular case of a crank mechanism model is presented.
Technical Paper

Pem Fuel Cell Performance Under Particular Operating Conditions Causing the Production of Liquid Water: A Morphing on Bipolar Plate's Channels Approach

2011-04-12
2011-01-1349
A fuel-cell-based system's performance is mainly identified in the overall efficiency, strongly depending on the amount of power losses due to auxiliary devices to supply. In such a situation, everything that causes either a decrease of the available power output or an increment of auxiliary losses would determine a sensible overall efficiency reduction.
Technical Paper

Measuring the Mechanical Properties of Aluminum Sheets and Their Resistance Spot Welds at Large Strains Using Digital Image Correlation Coupled with a Modified Shear Test

2012-04-16
2012-01-0181
The constitutive behavior of aluminum alloy sheet and their resistance spot welds at large strains is critical for light weight vehicle design analysis and life prediction. However, data from uniaxial tensile tests are usually limited to small strains or by material instability. A novel technique was developed using digital image correlation coupled with a modified shear test to directly measure the stress - strain curves of aluminum alloy sheet at large strains. The modified shear sample prevents end rotation of the shear zone as compared to the ASTM B831 test. The results show that the effective stress - effective strain curves from shear tests match those obtained by uniaxial tension, but only by incorporating material anisotropy using the Barlat-Lian yield function. For the first time, the technique was applied to aluminum resistance spot welds to determine both the shear strength and stress-strain curves of spot welds at large strains.
Technical Paper

Experimental and FEA Investigation of Tensile Behaviour of High Strength Dual-Phase DP600 Steel

2005-04-11
2005-01-0080
The application of high strength steels in tube hydroforming is being considered as one of the most effective ways to achieve the overall weight reduction without compromising the vehicle safety (crashworthiness). In this paper, the tensile behaviour of high strength dual-phase steel DP600 was investigated. The microstructure, mechanical performance and damage evolution was evaluated. A new finite element (FE) model based on crystal plasticity theory was developed to investigate large strain phenomena in multi-phase materials.
Technical Paper

A Computationally Lightweight Dynamic Programming Formulation for Hybrid Electric Vehicles

2022-03-29
2022-01-0671
Predicting the fuel economy capability of hybrid electric vehicle (HEV) powertrains by solving the related optimal control problem has been available for a few decades. Dynamic programming (DP) is one of the most popular techniques implemented to this end. Current research aims at integrating further powertrain modeling criteria that improve the fidelity level of the optimal HEV powertrain control behavior predicted by DP, thus corroborating the reliability of the fuel economy assessment. Dedicated methodologies need further development to avoid the curse of dimensionality which is typically associated to DP when increasing the number of control and state variables considered. This paper aims at considerably reducing the overall computational effort required by DP for HEVs by removing the state term associated to the battery state-of-charge (SOC).
Technical Paper

Comprehensive Design Methodology of a Vehicle Monocoque: From Vehicle Dynamics to Manufacturing

2023-04-11
2023-01-0600
Climate change has become a real problem in our world. Society is trying to contain it as much as possible, promoting more sustainable behaviors and limiting pollution. For the automotive industry, this leads to progressive electrification and reduction of tailpipe emissions and fuel consumption for conventional vehicles. In this framework, this paper presents the design of a vehicle to compete in the Urban Concept category of Shell Eco Marathon, a competition among universities that has the goal to release a vehicle with the lowest possible fuel consumption. This work describes the monocoque design phases of the vehicle JUNO. The complete design approach is described, through the analysis of the decisional workflow adopted to integrate every technical solution from the aerodynamic constraints to the structural ones passing from the vehicle dynamic requirements.
Technical Paper

Delivery-Valve Effects on the Performance of an Automotive Diesel Fuel-Injection System

1999-03-01
1999-01-0914
An integrated theoretical and experimental investigation was carried out in order to evaluate the effects that the pump delivery-valve assembly can produce on the performance of a pump-line-nozzle fuel-injection system with a distributor-type pump for automotive diesel engines. Four distinct delivery valves, one constant-pressure valve, one reflux-hole and two relief-volume valves, were separately fitted to the pump and for each configuration of the delivery assembly the system behavior was analyzed under full-load steady-state operations in a wide pump angular-speed range. Fuel injection-rate as well as local pressure time-histories were investigated, paying specific attention to the occurrence and temporal evolution of cavitation phenomena in the pressure pipe and injector nozzle, after the valve closure. The flow across the delivery-valve assembly was theoretically examined in order to ascertain any instability sources as possible causes of cyclic fluctuations.
Technical Paper

Comparative Corrosion Evaluation of Ferritic Stainless Steels Utilized in Automotive Exhaust Applications

2018-04-03
2018-01-1407
The purpose of this work was to initiate a comparative evaluation of the aqueous corrosion resistance of ferritic stainless steels currently used to fabricate automotive exhaust systems. Both acid condensate and double loop electrochemical potentiokinetic reactivation (DL-EPR) testing using both as-received and heat treated test coupons prepared from Types 409, 409Al, 436 and 439 stainless steel was conducted for this purpose. A truncated version of an in-house acid condensate testing protocol revealed that Type 409Al stainless steel was the most resistant to corrosion of the four ferritic stainless steels examined, whereas Type 409 stainless steel was the least resistance to corrosion.
Technical Paper

Comparative Corrosion Assessment of Coated Alloys for Multi-Material Lightweight Vehicle Architectures

2015-04-14
2015-01-0738
The purpose of this study was to conduct a comparative corrosion assessment of alloys and coating schemes of interest for the fabrication of multi-material lightweight vehicle architectures. Alloys considered for this application included galvanized high strength low alloy steel, aluminum alloy AA6111 and magnesium alloy ZEK100. The coating scheme considered for corrosion protection included a layered paint top-coat scheme that was applied to a pre-treated surface. The pre-treatments included an alloy-specific commercial conversion coating (CC) and a plasma electrolytic deposition (PED) process that was applied only to the ZEK100 material. The corrosion assessment of the scribed coated alloy panels was conducted after 1000 h exposure in the ASTM B117 salt fog environment. Characterization of the mode and extent of corrosion damage observed and the role played by the exposed alloy microstructure utilized both light optical microscopy and electron microscopy.
X