Refine Your Search

Topic

Search Results

Technical Paper

Tolerance and Properties of Superficial Soft Tissues In Situ

1970-02-01
700910
Utilizing unembalmed cadaver test subjects, a series of tests was carried out to characterize quantitatively the resistance of the skin, the soft underlying tissue of the scalp, and certain other typical areas of the body to impact loading. The impacts were delivered by the use of an instrumented free-fall device similar to that previously employed for facial bone fracture experiments. In one group of tests, metal and glass edges were affixed to the impacting device to produce localized trauma under conditions which were standardized with respect to variables affecting the degree of the injury. In the second group of experiments, specimens of skin, together with underlying tissue of uniform thickness, were subjected to compressive impact between the parallel surfaces of the impacting weight and a heavy metal platen. From these latter experiments the force-time histories, coefficient of restitution, and hysteresis loops of load versus deflection were obtained for the specimens.
Technical Paper

Mechanical Necks with Humanlike Responses

1972-02-01
720959
A viscoelastic neck structure that responds to impact environments in a manner similar to the human neck is described. The neck structure consists of four ball-jointed segments and one pin-connected “nodding” segment with viscoelastic resistive elements inserted between segments that provide bending resistance as well as the required energy dissipation. Primary emphasis was placed on developing appropriate flexion and extension responses with secondary emphasis placed on axial, lateral, and rotational characteristics. The methods used to design the resistance elements for the neck structure are discussed. Three variations of the resistive elements have been developed that meet the response characteristics based on the data of Mertz and Patrick. However, no single resistive element has satisfied the flexion and extension characteristics simultaneously, but such an element appears to be feasible.
Technical Paper

Mechanical Simulation of Human Thorax Under Impact

1973-02-01
730982
This paper summarizes an analysis, design, and test project in which a dummy chest structure was developed. The chest consisted of mechanical elements that had been characterized by computer simulations as giving responses to blunt frontal impacts necessary for biofidelity. An analysis of mechanical rib structures indicated that materials having a high ratio of yield stress to modulus of elasticity were required. Only metals having unusually high yield strengths, such as spring steels, qualified. A mechanical system was developed with steel ribs pivoted at each end as a primary spring. A secondary spring was a pair of commercially available die springs acting in parallel with the ribs after 25.4 mm (1.00 in) deflection. A fluid damper was developed to provide the damping. The chest structure was tested under conditions modified from those used by Kroell. The modifications were holding the spine rigidly and reducing the impact masses.
Technical Paper

Impact Tolerance and Response of the Human Thorax

1971-02-01
710851
At the 1970 SAE International Automobile Safety Conference, the first experimental chest impact results from a new, continuing biomechanics research program were presented and compared with earlier studies performed elsewhere by one of the authors using a different technique. In this paper, additional work from the current program is documented. The general objective remains unchanged: To provide improved quantification of injury tolerance and thoracic mechanical response (force-time, deflection-time, and force-deflection relationships) for blunt sternal impact to the human cadaver. Fourteen additional unembalmed specimens of both sexes (ranging in age from 19-81 years, in weight from 117-180 lb, and in stature from 5 ft 1-1/2 in to 6 ft) have been exposed to midsternal, blunt impacts using a horizontal, elastic-cord propelled striker mass. Impact velocities were higher than those of the previous work, ranging from 14-32 mph.
Technical Paper

Thoracic Tolerance to Whole-Body Deceleration

1971-02-01
710852
A professional high diver, instrumented with accelerometers, performed sixteen dives from heights between 27-57 ft. For each dive, he executed a 3/4 turn and landed supine on a 3-ft deep mattress which consisted of pieces of low-density urethane foam encased in a nylon cover. Using FM telemetry, sagittal plane decelerations were recorded for a point either on the sternum or the forehead. Impact velocities and corresponding stopping distances for the thorax and the head were calculated from high-speed movies of the dives. For a 57-ft dive, the impact velocity of the thorax was 41 mph with a corresponding stopping distance of 34.6 in. The peak resultant deceleration of the thorax was 49.2 g with a pulse duration of 100 ms. The maximum rate of change of the deceleration of the thorax was 5900 g/s. No discomfort was experienced as a result of this impact. The maximum forehead deceleration occurred during a 47.0-ft drop and exceeded 56 g with a Gadd Severity Index greater than 465.
Technical Paper

Automotive Powerplant Transducers - Fact or Fiction?

1973-02-01
730573
Most transducers offered commercially are suitable for laboratory, aerospace, or industrial process applications but do not meet additional, stringent automotive requirements. A need exists, both present and future, for various types of transducers in automotive powerplant control systems. Possible electronic systems and subsystems requiring transducers are discussed, and the types of transducers needed for these systems are described along with a discussion of a general set of specifications with respect to accuracy, reliability, and durability. Substantial transducer development is needed to enhance the advancement of certain automotive electronic systems. This paper points out these requirements to the electronics industry in an effort to encourage a mutual industry development that will advance the technology.
Technical Paper

Lubricant Viscosity Effects on Passenger Car Fuel Economy

1975-02-01
750675
As part of General Motors effort to improve fuel economy, the effects of engine and power train lubricant viscosities were investigated in passenger car tests using either high- or low- viscosity lubricants in the engine, automatic transmission, and rear axle. Fuel economy was determined in both constant speed and various driving cycle tests with the car fully warmed-up. In addition, fuel economy was determined in cold-start driving cycle tests. Using low-viscosity lubricants instead of high-viscosity lubricants improved warmed-up fuel economy by as much as 5%, depending upon the differences in lubricant viscosity and type of driving. Cold-start fuel economy with low-viscosity lubricants was 5% greater than that with high-viscosity lubricants. With such improvements, it is concluded that significant customer fuel economy gains can be obtained by using the lowest viscosity engine and power train lubricants recommended for service.
Technical Paper

A Rotary Engine Test to Evaluate Lubricants for Control of Rotor Deposits

1974-02-01
740159
During development of the General Motors rotary engine, the lubricant was recognized as important to its success because certain lubricants produced deposits which tended to stick both side and apex seals. Consequently, it was decided to develop a rotary engine-dynamometer test, using a Mazda engine, which could be used for lubricant evaluation. In an investigation using an SE engine oil with which there was rotary engine experience, engine operating variables and engine modifications were studied until the greatest amount of deposits were obtained in 100 h of testing. The most significant engine modifications were: omission of inner side seals, plugging of half the rotor bearing holes, pinning of oil seals, grinding of end and intermediate housings, and using a separate oil reservoir for the metering pump. Using this 100 h test procedure, three engine oils and five automatic transmission fluids were evaluated.
Technical Paper

Transmission Air Breathing Suppressor (TABS) Valve - A Device for Improving Automatic Transmission Fluid Life

1974-02-01
740055
Automatic transmission fluids can oxidize with use, causing marginal transmission performance and eventual transmission malfunction. Periodic fluid changes are presently recommended to alleviate this problem. Fluid oxidation is promoted in current transmissions because they breathe air freely through a vent tube. To reduce fluid oxidation, and thereby improve fluid and transmission durability, a one-way check valve, called the Transmission Air Breathing Suppressor (TABS), was designed to restrict the intake of air into the transmission and to replace the conventional vent tube. The effectiveness of the TABS valve in reducing fluid oxidation was determined in high temperature transmission cycling tests and in taxicab tests. Fluid oxidation results with the TABS valve-equipped transmissions were compared to those with normally-vented transmissions. By reducing the amount of oxygen in the transmission gas, the TABS valve nearly eliminated fluid oxidation.
Technical Paper

Using Interactive Graphics for the Preparation and Management of Finite Element Data

1974-02-01
740344
Interactive graphics is an aid which eliminates the data management problems that arise when manually preparing finite element models. Line and surface data representations of sheet metal automotive stampings are displayed on a cathode ray tube (CRT), and these data are then used for building finite element models. Elements are built by creating node points with the light pen or by using automatic mesh generating techniques. By using the interactive capability, the user immediately sees the results of his modeling decisions and can make changes in his model as a result of viewing his work. The interactive graphics system allows the user to define his elements, load cases, boundary conditions, and freedom sets without worrying about the grid point or element numbers. All information is communicated through the use of either the light pen or the keyboard. As information is supplied about the model, it is stored in a data base for review and possible change.
Technical Paper

The Highway Safety Research Institute Dummy Compared with General Motors Biofidelity Recommendations and the Hybrid II Dummy

1974-02-01
740588
Two Highway Safety Research Institute (HSRI) dummies were tested and evaluated. Based on the analysis given, the HSI dummy should not be used for vehicle qualification testing. However, many of its components offer viable alternatives for future dummy development. The dummy was found to have inadequate biomechanical fidelity in the head, neck, and chest, although its characteristics were very promising and, as a whole, biomechanically superior to the Hybrid II. Its repeatability and reproducibility in dynamic component tests were better than the Hybrid II dummy. In particular, the HSRI friction joints were outstanding in repeatability and had a significant advantage in usability in that they do not require resetting between tests. In three-point harness and ACRS systems tests, the values of injury criteria produced by the HSRI dummy were generally lower than those obtained with the Hybrid II, especially the femur loads in the ACRS tests.
Technical Paper

Designing to Resist Fatigue - Examples of Component Design

1962-01-01
620262
This paper illustrates by way of two practical examples, namely, transmission gears and crankshafts, how the automotive industry applies basic approaches and methods for achieving fatigue resistant design. Analytic, laboratory, and field studies necessary in the development of these components are briefly outlined.
Technical Paper

Evaluating the Effect of Fluids on Automatic Transmission Piston Seal Materials

1962-01-01
620231
A brief review of the testing of automatic transmission fluid for compatibility with seals is presented. The total immersion test used in fluid qualification, while apparently effective in predicting the compatibility of fluids and seals in service, does not correlate well with transmission tests with respect to hardness change of piston seals. The Dip-Cycle Test, developed to overcome this limitation, is a procedure for alternately immersing seal specimens in the test fluid and suspending them in the hot air-fluid vapor atmosphere above the fluid. Correlation of the Dip-Cycle Test with transmission piston seal results is much improved over that with the total immersion test. It is the purpose of this paper to review these developments and to present an improved test procedure (dip cycle test) for evaluating the effect of fluids on transmission piston seal materials.
Technical Paper

Fluid Composition Affects Leakage from Automatic Transmissions

1966-02-01
660397
Tests were conducted using older model cars with automatic transmissions to determine the effect of fluid composition on leakage past the rotating shaft seals. It was found that seal leakage was reduced or stopped by changing to seal-swelling fluids, and increased with seal-shrinking fluids. Leakage was also reduced by adding aromatic additives to existing fluids in the transmissions. Seal volume and hardness change results from bench tests support the car data.
Technical Paper

Evaluating the Effect of Fluids on Automatic Transmission Rotating Shaft Seal Elastomers

1966-02-01
660396
The Total Immersion Test (ASTM D 471) for seal elastomers, used in evaluating the compatibility of fluids and seals for automatic transmissions, does not, produce hardness and volume change results similar to those found for rotating shaft seals in service. The Tip Cycle Test was devised to provide better agreement with service results. In the test, one side of the seal is exposed to air, and the other alternately to fluid and to air-fluid vapor. Rotating shaft seals were evaluated in both car and dynamometer transmission tests, and in various bench tests. Agreement was poor between transmission tests and both the Total Immersion and the Dip Cycle Tests. Good agreement was found with the Tip Cycle Test.
Technical Paper

A Study of the Effects of Automotive Fluids on Elastomer Seal Materials Using Immersion Tests*

1966-02-01
660395
Effective performance of functional automotive components requires fluid sealing under compatible conditions. One method of determining this compatibility is through the use of immersion testing under a variety of conditions that simulate those experienced in actual use. By measuring the changes in the physical properties of the seal materials after immersion a judgment can be made regarding seal/fluid compatibility which will be encountered later in actual use. A series of immersion tests using representative seal materials and automotive fluids; namely, gear oils, transmission fluids, and motor oils were conducted within the framework of the Technical Committee on Automotive Rubber, jointly sponsored by SAE-ASTM.
Technical Paper

Digital Data Acquisition and Computer Data Reduction for the California Exhaust Emission Test

1966-02-01
660406
The tedious, time consuming task of hand reducing data from the California exhaust emission test has been alleviated through the use of digital data acquisition equipment and a digital computer. Analog signals from exhaust gas analyzers and an engine speed transducer are converted to digital measurements which are recorded on tape and submitted to a digital computer for data analysis and computation of results. In the data analysis, the computer identifies the required driving modes from engine speed changes, taking into account the sample delay time. “Reported” composite emissions determined by the automatic data reduction method agree within 5% with results determined by careful hand analysis of analog strip chart recordings. The results determined by the automatic data reduction system are more consistent and accurate because human errors prevalent in hand analysis have been eliminated, and because nonlinear analyzer response is accounted for.
Technical Paper

Numerically Controlled Milling for Making Experimental Turbomachinery

1967-02-01
670096
Utilization of numerically controlled milling has been found particularly attractive in producing, in limited quantities, the three-dimensional curved surfaces characteristic of turbomachinery. In experimental and developmental programs its use can result in decreased fabrication cost, reduced lead time, and improved dimensional accuracy. Following a review of the general classifications of numerically controlled milling machines available for manufacture of such parts, illustrations are given of some of the procedures and techniques employed in their use. A variety of parts made using numerical control serve as examples.
Technical Paper

Friction Characteristics of Controlled-Slip Differential Lubricants

1966-02-01
660778
Controlled-slip differentials (CSD) improve car operation under wheel slipping conditions. The performance of CSD's is dependent upon two criteria associated with clutch friction: “chatter” and “effectiveness.” “Chatter” is an undesirable noise which may occur during differential action. “Effectiveness” is a measure of the ability of the CSD clutches to transfer torque, during wheel slippage, to the wheel with the greater traction. The objective of this investigation was to definitely establish the cause of chatter, measure CSD effectiveness, and relate friction characteristics of lubricants to CSD operation. In tests with an instrumented car, it was found that both chatter and effectiveness are strongly influenced by the lubricant. Chatter occurred with lubricants that produced an increase in clutch friction with decreasing sliding speed. Chatter did not occur with lubricants containing friction modifiers which produced a decrease in clutch friction with decreasing sliding speed.
Technical Paper

The Use of a Variable-Stability Vehicle in Handling Research

1965-02-01
650659
This paper describes the use of the GMR variable stability passenger car in a brief study of driver performance in a maneuvering task. The study was part of a pilot program for evaluation of test methods and equipment for future and more extensive human factors evaluations. Three distinct types of passenger car directional control characteristics were simulated, and each configuration was driven by each of six different drivers through a complex course. The results of the investigation are presented in terms of the average driver performance with each vehicle configuration.
X