Refine Your Search

Search Results

Viewing 1 to 16 of 16
Technical Paper

Measured Statistical Characteristics of Automotive Ignition Noise

1973-02-01
730133
Noise produced by automotive ignition systems can deteriorate the performance of nearby communication systems. An important step toward alleviating this difficulty is to characterize the ignition noise. Measurements have been made of the noise peak amplitude distribution of a number of identically equipped vehicles over a fixed period of time. Both vertical and horizontal polarizations were used, and measurements were made at two frequencies, 145 and 230 MHz. These statistics were then compared to various probability distributions to attempt to characterize the amplitude distribution of the noise. The distributions studied were: the log-normal, the exponential, the Rayleigh, and the Weibull distributions. It was concluded that the best fit was provided by the Weibull distribution. The parameters of the best fitting distribution are primarily a function of the antenna's polarization, with frequency having only a minor effect.
Technical Paper

Lubricant Viscosity Effects on Passenger Car Fuel Economy

1975-02-01
750675
As part of General Motors effort to improve fuel economy, the effects of engine and power train lubricant viscosities were investigated in passenger car tests using either high- or low- viscosity lubricants in the engine, automatic transmission, and rear axle. Fuel economy was determined in both constant speed and various driving cycle tests with the car fully warmed-up. In addition, fuel economy was determined in cold-start driving cycle tests. Using low-viscosity lubricants instead of high-viscosity lubricants improved warmed-up fuel economy by as much as 5%, depending upon the differences in lubricant viscosity and type of driving. Cold-start fuel economy with low-viscosity lubricants was 5% greater than that with high-viscosity lubricants. With such improvements, it is concluded that significant customer fuel economy gains can be obtained by using the lowest viscosity engine and power train lubricants recommended for service.
Technical Paper

A Single-Wheel Trailer for Tire Noise Research

1974-02-01
740109
A single-wheel trailer has been designed and built to study the origins of tire noise and its basic characteristics. The single test tire, nominally the 10.00/20 size usually mounted on large trucks and semitrailers, is located 12.2 m (40 ft) behind the rear axle of the towing vehicle to isolate it from other noise sources. Reflective surfaces that could interfere with noise measurements are minimized by the high, single-beam construction of the trailer. The towing vehicle is modified to reduce its noise and wake in the vicinity of the test tire, which can be loaded to 22.2 kN (5000 lb) by dead weights and rolled at expressway speeds. Because of its unusual configuration, the dynamic behavior of the trailer was studied prior to design to help determine several design parameters and show that the trailer would follow well. Extensive stress analyses of the trailer beam and other structural elements were also required.
Technical Paper

A Rotary Engine Test to Evaluate Lubricants for Control of Rotor Deposits

1974-02-01
740159
During development of the General Motors rotary engine, the lubricant was recognized as important to its success because certain lubricants produced deposits which tended to stick both side and apex seals. Consequently, it was decided to develop a rotary engine-dynamometer test, using a Mazda engine, which could be used for lubricant evaluation. In an investigation using an SE engine oil with which there was rotary engine experience, engine operating variables and engine modifications were studied until the greatest amount of deposits were obtained in 100 h of testing. The most significant engine modifications were: omission of inner side seals, plugging of half the rotor bearing holes, pinning of oil seals, grinding of end and intermediate housings, and using a separate oil reservoir for the metering pump. Using this 100 h test procedure, three engine oils and five automatic transmission fluids were evaluated.
Technical Paper

Transmission Air Breathing Suppressor (TABS) Valve - A Device for Improving Automatic Transmission Fluid Life

1974-02-01
740055
Automatic transmission fluids can oxidize with use, causing marginal transmission performance and eventual transmission malfunction. Periodic fluid changes are presently recommended to alleviate this problem. Fluid oxidation is promoted in current transmissions because they breathe air freely through a vent tube. To reduce fluid oxidation, and thereby improve fluid and transmission durability, a one-way check valve, called the Transmission Air Breathing Suppressor (TABS), was designed to restrict the intake of air into the transmission and to replace the conventional vent tube. The effectiveness of the TABS valve in reducing fluid oxidation was determined in high temperature transmission cycling tests and in taxicab tests. Fluid oxidation results with the TABS valve-equipped transmissions were compared to those with normally-vented transmissions. By reducing the amount of oxygen in the transmission gas, the TABS valve nearly eliminated fluid oxidation.
Technical Paper

Designing to Resist Fatigue - Examples of Component Design

1962-01-01
620262
This paper illustrates by way of two practical examples, namely, transmission gears and crankshafts, how the automotive industry applies basic approaches and methods for achieving fatigue resistant design. Analytic, laboratory, and field studies necessary in the development of these components are briefly outlined.
Technical Paper

Evaluating the Effect of Fluids on Automatic Transmission Piston Seal Materials

1962-01-01
620231
A brief review of the testing of automatic transmission fluid for compatibility with seals is presented. The total immersion test used in fluid qualification, while apparently effective in predicting the compatibility of fluids and seals in service, does not correlate well with transmission tests with respect to hardness change of piston seals. The Dip-Cycle Test, developed to overcome this limitation, is a procedure for alternately immersing seal specimens in the test fluid and suspending them in the hot air-fluid vapor atmosphere above the fluid. Correlation of the Dip-Cycle Test with transmission piston seal results is much improved over that with the total immersion test. It is the purpose of this paper to review these developments and to present an improved test procedure (dip cycle test) for evaluating the effect of fluids on transmission piston seal materials.
Technical Paper

Fluid Composition Affects Leakage from Automatic Transmissions

1966-02-01
660397
Tests were conducted using older model cars with automatic transmissions to determine the effect of fluid composition on leakage past the rotating shaft seals. It was found that seal leakage was reduced or stopped by changing to seal-swelling fluids, and increased with seal-shrinking fluids. Leakage was also reduced by adding aromatic additives to existing fluids in the transmissions. Seal volume and hardness change results from bench tests support the car data.
Technical Paper

Evaluating the Effect of Fluids on Automatic Transmission Rotating Shaft Seal Elastomers

1966-02-01
660396
The Total Immersion Test (ASTM D 471) for seal elastomers, used in evaluating the compatibility of fluids and seals for automatic transmissions, does not, produce hardness and volume change results similar to those found for rotating shaft seals in service. The Tip Cycle Test was devised to provide better agreement with service results. In the test, one side of the seal is exposed to air, and the other alternately to fluid and to air-fluid vapor. Rotating shaft seals were evaluated in both car and dynamometer transmission tests, and in various bench tests. Agreement was poor between transmission tests and both the Total Immersion and the Dip Cycle Tests. Good agreement was found with the Tip Cycle Test.
Technical Paper

A Study of the Effects of Automotive Fluids on Elastomer Seal Materials Using Immersion Tests*

1966-02-01
660395
Effective performance of functional automotive components requires fluid sealing under compatible conditions. One method of determining this compatibility is through the use of immersion testing under a variety of conditions that simulate those experienced in actual use. By measuring the changes in the physical properties of the seal materials after immersion a judgment can be made regarding seal/fluid compatibility which will be encountered later in actual use. A series of immersion tests using representative seal materials and automotive fluids; namely, gear oils, transmission fluids, and motor oils were conducted within the framework of the Technical Committee on Automotive Rubber, jointly sponsored by SAE-ASTM.
Technical Paper

Friction Characteristics of Controlled-Slip Differential Lubricants

1966-02-01
660778
Controlled-slip differentials (CSD) improve car operation under wheel slipping conditions. The performance of CSD's is dependent upon two criteria associated with clutch friction: “chatter” and “effectiveness.” “Chatter” is an undesirable noise which may occur during differential action. “Effectiveness” is a measure of the ability of the CSD clutches to transfer torque, during wheel slippage, to the wheel with the greater traction. The objective of this investigation was to definitely establish the cause of chatter, measure CSD effectiveness, and relate friction characteristics of lubricants to CSD operation. In tests with an instrumented car, it was found that both chatter and effectiveness are strongly influenced by the lubricant. Chatter occurred with lubricants that produced an increase in clutch friction with decreasing sliding speed. Chatter did not occur with lubricants containing friction modifiers which produced a decrease in clutch friction with decreasing sliding speed.
Technical Paper

2,000,000 Miles of Fluid Evaluation in City Bus Automatic Transmissions

1967-02-01
670185
In certain types of city bus service some automatic transmission fluids can fail in less than 10,000 miles. In order to provide satisfactory transmission performance for longer mileage, improved fluids are required. An investigation was undertaken to obtain improved fluids. Fifteen different fluid formulations were evaluated in 30 city buses operated in normal service for more than 2,000,000 miles. It was determined that fluids fail because of frictional deterioration and oxidation. Based on these evaluations, only two fluids were found to be satisfactory for more than 40,000 miles; one additional fluid was satisfactory for more than 30,000 miles. The remaining 12 fluids failed in less than 20,000 miles.
Technical Paper

V. I. Improvers and Engine Performance

1968-02-01
680071
The use of multigrade (V.I. improved) oils in automotive engines has increased significantly in recent years. However, the performance of these oils in terms of factors such as oil economy, wear, and noise, is not always equal to that of single grade oils. Although the initial viscosity of multigrade oils is related to both the base oil and the V.I. improver, the viscosity decreases with use, with the primary factors determining the magnitude of the change being the degree of shear and the characteristics and concentration of the V.I. improver used. This decrease in viscosity has been assumed to be the cause of the decreases in oil economy that may occur with oil use. However, viscosity changes are not believed to be the primary factor responsible since similar oil economy changes have also been observed for single grade oils. Nevertheless, the characteristics and concentration of the V.I. improver used can be a significant factor influencing oil economy.
Technical Paper

Automatic Transmission Fluid Viscosity at Low Temperature and its effect on transmission performance

1960-01-01
600049
A LOW-TEMPERATURE study of the relationship between the performance of a step-type automatic transmission and the transmission fluid viscosity is reported in this paper. It is shown that the low-temperature malfunction of these units is due to the viscometric properties of the fluid and that at the temperature at which the fluid reaches a certain critical viscosity the transmission will fail. A mathematical analysis of the mechanism of failure supports the conclusions drawn from the experimental study.*
Technical Paper

DEVELOPING TRANSAXLE FLUID

1960-01-01
600069
EXTENSIVE TESTING by GM Research Laboratories has screened five promising transaxle fluids out of 32 mineral-oil-base fluids, 10 synthetic-base fluids, and numerous additive-base stock combination fluids. This paper discusses the findings of the testing and the continuing program on the five fluids. Transaxle fluids have a number of properties affecting performance, including: High-temperature viscosity. Low-temperature fluidity. Shear resistance. Friction properties. Oxidation resistance. Antifoam quality. Effect on seals. Fluid-clutch plate compatibility. Antiwear quality. Extreme-pressure quality. Antirust and anticorrosion qualities.*
Technical Paper

Factors Influencing the Measurement of Tire Uniformity

1965-02-01
650734
Tire nonuniformities are a major source of vibration problems in vehicles. There is considerable disagreement on which tire uniformity parameters are important to vehicle noise and vibration problems, and on how these uniformity parameters should be measured. This paper is concerned primarily with the effects of the nonuniformities of the tire structure which cause contact patch force variations as the tire is rolled in a straight line at constant axle height. Experimental results showing the effects of mean radial load and roll size on these structural, or static, nonuniformities are presented which indicate that these force variations should be measured on a large roll at rated load. Mathematical analyses of certain vehicle vibrations show that radial and lateral force variation are important uniformity parameters. The amplitude of the first harmonic of these force variations contributes to vehicle shake.
X