Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

Enabling Flex Fuel Vehicle Emissions Testing – Test Cell Modifications and Data Improvements

2009-04-20
2009-01-1523
The challenges of flex-fuel vehicle (FFV) emissions measurements have recently come to the forefront for the emissions testing community. The proliferation of ethanol blended gasoline in fractions as high as 85% has placed a new challenge in the path of accurate measures of NMHC and NMOG emissions. Test methods need modification to cope with excess amounts of water in the exhaust, assure transfer and capture of oxygenated compounds to integrated measurement systems (impinger and cartridge measurements) and provide modal emission rates of oxygenated species. Current test methods fall short of addressing these challenges. This presentation will discuss the challenges to FFV testing, modifications made to Ford Motor Company’s Vehicle Emissions Research Laboratory test cells, and demonstrate the improvements in recovery of oxygenated species from the vehicle exhaust system for both regulatory measurements and development measurements.
Journal Article

Fracture Modeling of AHSS in Component Crush Tests

2011-04-12
2011-01-0001
Advanced High Strength Steels (AHSS) have been implemented in the automotive industry to balance the requirements for vehicle crash safety, emissions, and fuel economy. With lower ductility compared to conventional steels, the fracture behavior of AHSS components has to be considered in vehicle crash simulations to achieve a reliable crashworthiness prediction. Without considering the fracture behavior, component fracture cannot be predicted and subsequently the crash energy absorbed by the fractured component can be over-estimated. In full vehicle simulations, failure to predict component fracture sometimes leads to less predicted intrusion. In this paper, the feasibility of using computer simulations in predicting fracture during crash deformation is studied.
Technical Paper

Numerical Investigation of Friction Material Contact Mechanics in Automotive Clutches

2020-04-14
2020-01-1417
A wet clutch model is required in automotive propulsion system simulations for enabling robust design and control development. It commonly assumes Coulomb friction for simplicity, even though it does not represent the physics of hydrodynamic torque transfer. In practice, the Coulomb friction coefficient is treated as a tuning parameter in simulations to match vehicle data for targeted conditions. The simulations tend to deviate from actual behaviors for different drive conditions unless the friction coefficient is adjusted repeatedly. Alternatively, a complex hydrodynamic model, coupled with a surface contact model, is utilized to enhance the fidelity of system simulations for broader conditions. The theory of elastic asperity deformation is conventionally employed to model clutch surface contact. However, recent examination of friction material shows that the elastic modulus of surface fibers significantly exceeds the contact load, implying no deformation of fibers.
Journal Article

Electrochemical Characterization of Coated Self-Piercing Rivets for Magnesium Applications

2016-01-01
2015-01-9085
This work reports on measurement and analysis of the galvanic interaction between steel self-piercing rivets (SPRs) having several different surface conditions and magnesium alloy substrates under consideration for use in automotive structural assemblies. Rivet surface conditions included uncoated steel, conventional Zn-Sn barrel plating and variations of commercial aluminizing processes, including supplemental layers and sealants. Coating characteristics were assessed using open circuit potential (OCP) measurement, potentiodynamic polarization scanning (PDS), and electrochemical impedance spectroscopy (EIS). The degree of galvanic coupling was determined using zero-resistance ammeter (ZRA) and the scanning vibrating electrode technique (SVET), which also permitted characterization of galvanic current flows in situ.
Journal Article

Predicting Stress vs. Strain Behaviors of Thin-Walled High Pressure Die Cast Magnesium Alloy with Actual Pore Distribution

2016-04-05
2016-01-0290
In this paper, a three-dimensional (3D) microstructure-based finite element modeling method (i.e., extrinsic modeling method) is developed, which can be used in examining the effects of porosity on the ductility/fracture of Mg castings. For this purpose, AM60 Mg tensile samples were generated under high-pressure die-casting in a specially-designed mold. Before the tensile test, the samples were CT-scanned to obtain the pore distributions within the samples. 3D microstructure-based finite element models were then developed based on the obtained actual pore distributions of the gauge area. The input properties for the matrix material were determined by fitting the simulation result to the experimental result of a selected sample, and then used for all the other samples’ simulation. The results show that the ductility and fracture locations predicted from simulations agree well with the experimental results.
Journal Article

Effect of Humidity on the Very High Cycle Fatigue Behavior of a Cast Aluminum Alloy

2016-04-05
2016-01-0371
In this paper, fatigue tests on a cast aluminum alloy (AS7GU-T64) were performed under different frequencies and humidity levels. Tests conducted under conventional frequency in laboratory air have been compared to tests conducted under ultrasonic frequency in dry air, saturated humidity and in distilled water. It was observed that the highest and lowest fatigue lives correspond to ultrasonic fatigue tests in dry air and in distilled water, respectively. Unlike specimens tested at conventional frequency, all of the specimens tested at ultrasonic frequency presented a large amount of slip facets on the fatigue crack propagation fracture surface.
Journal Article

Effect of Thermal Exposure Time on the Relaxation of Residual Stress in High Pressure Die Cast AM60

2016-04-05
2016-01-0423
Magnesium alloys are becoming more commonly used for large castings with sections of varying thicknesses. During subsequent processing at elevated temperatures, residual stresses may relax and become a potential mechanism for part distortion. This study was conducted to quantify the effects of thermal exposure on residual stresses and relaxation in a high pressure die cast magnesium (AM60) alloy. The goal was to characterize relaxation of residual stresses at temperatures that are commonly experienced by body components during a typical paint bake cycle. A residual stress test sample design and quench technique developed for relaxation were used and a relaxation study was conducted at two exposure temperatures (140°C and 200°C) over a range of exposure times (0.25 to 24 hours). The results indicate that a significant amount of residual stress relaxation occurred very rapidly during exposure at both exposure temperatures.
Journal Article

High Strain Rate Mechanical Characterization of Carbon Fiber Reinforced Polymer Composites Using Digital Image Correlations

2017-03-28
2017-01-0230
The introduction of carbon fiber reinforced polymer (CFRP) composites to structural components in lightweight automotive structures necessitates an assessment to evaluate that their crashworthiness dynamic response provides similar or higher levels of safety compared to conventional metallic structures. In order to develop, integrate and implement predictive computational models for CFRP composites that link the materials design, molding process and final performance requirements to enable optimal design and manufacturing vehicle systems for this study, the dynamic mechanical response of unidirectional (UD) and 2x2 twill weave CRFP composites was characterized at deformation rates applicable to crashworthiness performance. Non-standardized specimen geometries were tested on a standard uniaxial frame and an intermediate-to-high speed dynamic testing frame, equipped with high speed cameras for 3D digital image correlation (DIC).
Journal Article

Side Impact Pressure Sensor Predictions with Computational Gas and Fluid Dynamic Methods

2017-03-28
2017-01-0379
Three computational gas and fluid dynamic methods, CV/UP (Control Volume/Uniform Pressure), CPM (Corpuscular Particle Method), and ALE (Arbitrary Lagrangian and Eulerian), were investigated in this research in an attempt to predict the responses of side crash pressure sensors. Acceleration-based crash sensors have been used extensively in the automotive industry to determine the restraint system firing time in the event of a vehicle crash. The prediction of acceleration-based crash pulses by using computer simulations has been very challenging due to the high frequency and noisy responses obtained from the sensors, especially those installed in crush zones. As a result, the sensor algorithm developments for acceleration-based sensors are largely based on prototype testing. With the latest advancement in the crash sensor technology, side crash pressure sensors have emerged recently and are gradually replacing acceleration-based sensor for side crash applications.
Journal Article

Thermal Response of Aluminum Engine Block During Thermal Spraying of Bores: Comparison of FEA and Thermocouple Results

2017-03-28
2017-01-0451
Thermally sprayed coatings have used in place of iron bore liners in recent aluminum engine blocks. The coatings are steel-based, and are sprayed on the bore wall in the liquid phase. The thermal response of the block structure determines how rapidly coatings can be applied and thus the investment and floor space required for the operation. It is critical not to overheat the block to prevent dimensional errors, metallurgical damage, and thermal stress cracks. This paper describes an innovative finite element procedure for estimating both the substrate temperature and residual stresses in the coating for the thermal spray process. Thin layers of metal at a specified temperature, corresponding to the layers deposited in successive thermal spray torch passes, are applied to the substrate model, generating a heat flux into the block. The thickness, temperature, and application speed of the layers can be varied to simulate different coating cycles.
Journal Article

Enhanced Heat Transfer Coefficient (HTC) Method to Model Air Quench Process: HTC Patching for More Accurate FEA Temperature Calculation

2016-04-05
2016-01-1383
Air quenching is a common manufacturing process in automotive industry to produce high strength metal component by cooling heated parts rapidly in a short period of time. With the advancement of finite element analysis (FEA) methods, it has been possible to predict thermal residual stress by computer simulation. Previous research has shown that heat transfer coefficient (HTC) for steady air quenching process is time and temperature independent but strongly flow and geometry dependent. These findings lead to the development of enhanced HTC method by performing CFD simulation and extracting HTC information from flow field. The HTC obtained in this fashion is a continuous function over the entire surface. In current part of the research, two patching algorithms are developed to divide entire surface into patches according to HTC profile and each patch is assigned a discrete HTC value.
Journal Article

A Comparative Study of Two ASTM Shear Test Standards for Chopped Carbon Fiber SMC

2018-04-03
2018-01-0098
Chopped carbon fiber sheet molding compound (SMC) material is a promising material for mass-production lightweight vehicle components. However, the experimental characterization of SMC material property is a challenging task and needs to be further investigated. There now exist two ASTM standards (ASTM D7078/D7078M and ASTM D5379/D5379M) for characterizing the shear properties of composite materials. However, it is still not clear which standard is more suitable for SMC material characterization. In this work, a comparative study is conducted by performing two independent Digital Image Correlation (DIC) shear tests following the two standards, respectively. The results show that ASTM D5379/D5379M is not appropriate for testing SMC materials. Moreover, the failure mode of these samples indicates that the failure is caused by the additional moment raised by the improper design of the fixture.
Journal Article

Stress-Corrosion Cracking Evaluation of Hot-Stamped AA7075-T6 B-Pillars

2017-03-28
2017-01-1271
High-strength aluminum alloys such as 7075 can be formed using advanced manufacturing methods such as hot stamping. Hot stamping utilizes an elevated temperature blank and the high pressure stamping contact of the forming die to simultaneously quench and form the sheet. However, changes in the thermal history induced by hot stamping may increase this alloy’s stress corrosion cracking (SCC) susceptibility, a common corrosion concern of 7000 series alloys. This work applied the breaking load method for SCC evaluation of hot stamped AA7075-T6 B-pillar panels that had been artificially aged by two different artificial aging practices (one-step and two-step). The breaking load strength of the specimens provided quantitative data that was used to compare the effects of tensile load, duration, alloy, and heat treatment on SCC behavior.
Technical Paper

Hardware-in-the-Loop, Traffic-in-the-Loop and Software-in-the-Loop Autonomous Vehicle Simulation for Mobility Studies

2020-04-14
2020-01-0704
This paper focuses on finding and analyzing the relevant parameters affecting traffic flow when autonomous vehicles are introduced for ride hailing applications and autonomous shuttles are introduced for circulator applications in geo-fenced urban areas. For this purpose, different scenarios have been created in traffic simulation software that model the different levels of autonomy, traffic density, routes, and other traffic elements. Similarly, software that specializes in vehicle dynamics, physical limitations, and vehicle control has been used to closely simulate realistic autonomous vehicle behavior under such scenarios. Different simulation tools for realistic autonomous vehicle simulation and traffic simulation have been merged together in this paper, creating a realistic simulator with Hardware-in-the-Loop (HiL), Traffic-in-the-Loop (TiL), and Software in-the-Loop (SiL) simulation capabilities.
Technical Paper

Effect Analysis for the Uncertain Parameters on Self-Piercing Riveting Simulation Model Using Machine Learning Model

2020-04-14
2020-01-0219
Self-piercing rivets (SPR) are efficient and economical joining methods used in the manufacturing of lightweight automotive bodies. The finite element method (FEM) is a potentially effective way to assess the joining process of SPRs. However, uncertain parameters could lead to significant mismatches between the FEM predictions and physical tests. Thus, a sensitivity study on critical model parameters is important to guide the high-fidelity modeling of the SPR insertion process. In this paper, an axisymmetric FEM model is constructed to simulate the insertion process of the SPR using LS-DYNA/explicit. Then, several surrogate models are evaluated and trained using machine learning methods to represent the relations between selected inputs (e.g., material properties, interfacial frictions, and clamping force) and outputs (cross-section dimensions).
Technical Paper

Mathematical Analysis of Clutch Thermal Energy during Automatic Shifting Coupled with Input Torque Truncation

2020-04-14
2020-01-0967
A step-ratio automatic transmission alters torque paths for gearshifting through engagement and disengagement of clutches. It enables torque sources to run efficiently while meeting driver demand. Yet, clutch thermal energy during gearshifting is one of the contributors to the overall fuel loss. In order to optimize drivetrain control strategy, including the frequency of shifts, it is important to understand the cost of shift itself. In a power-on upshift, clutch thermal energy is primarily dissipated during inertia phase. The interaction between multiple clutches, coupled with input torque truncation, makes the decomposition of overall energy loss less obvious. This paper systematically presents the mathematical analysis of clutch thermal energy during the inertia phase of a typical single-transition gearshift. In practice, a quicker shift is generally favored, partly because the amount of energy loss is considered smaller.
Journal Article

Developing Safety Standards for FCVs and Hydrogen Vehicles

2009-04-20
2009-01-0011
The SAE Fuel Cell Vehicle (FCV) Safety Working Group has been addressing FCV safety for over 9 years. The initial document, SAE J2578, was published in 2002. SAE J2578 has been valuable as a Recommended Practice for FCV development with regard to the identification of hazards and the definition of countermeasures to mitigate these hazards such that FCVs can be operated in the same manner as conventional gasoline internal combustion engine (ICE)-powered vehicles. SAE J2578 is currently being revised so that it will continue to be relevant as FCV development moves forward. For example, test methods were refined to verify the acceptability of hydrogen discharges when parking in residential garages and commercial structures and after crash tests prescribed by government regulation, and electrical requirements were updated to reflect the complexities of modern electrical circuits which interconnect both AC and DC circuits to improve efficiency and reduce cost.
Journal Article

Bayesian Probabilistic PCA Approach for Model Validation of Dynamic Systems

2009-04-20
2009-01-1404
In the automobile industry, the reliability and predictive capabilities of computer models for a dynamic system need to be assessed quantitatively. Quantitative validation allows engineers to assess and improve model reliability and quality objectively and ultimately lead to potential reduction in the number of prototypes built and tests. A good metric, which is essential in model validation, requires considering uncertainties in both testing and computer modeling. In addition, it needs to be able to compare multiple responses simultaneously, as multiple quantities are often encountered at different spatial and temporal points of a dynamic system. In this paper, a state-of-the-art validation technology is developed for multivariate complex dynamic systems by exploiting a probabilistic principal component analysis method and Bayesian statistics approach.
Journal Article

Enhanced Durability of a Cu/Zeolite Based SCR Catalyst

2008-04-14
2008-01-1025
Passenger and light duty diesel vehicles will require up to 90% NOx conversion over the Federal Test Procedure (FTP) to meet future Tier 2 Bin 5 standards. This accomplishment is especially challenging for low exhaust temperature applications that mostly operate in the 200 - 350°C temperature regime. Selective catalytic reduction (SCR) catalysts formulated with Cu/zeolites have shown the potential to deliver this level of performance fresh, but their performance can easily deteriorate over time as a result of high temperature thermal deactivation. These high temperature SCR deactivation modes are unavoidable due to the requirements necessary to actively regenerate diesel particulate filters and purge SCRs from sulfur and hydrocarbon contamination. Careful vehicle temperature control of these events is necessary to prevent unintentional thermal damage but not always possible. As a result, there is a need to develop thermally robust SCR catalysts.
Journal Article

Gasoline Fuel Injector Spray Measurement and Characterization - A New SAE J2715 Recommended Practice

2008-04-14
2008-01-1068
With increasingly stringent emissions regulations and concurrent requirements for enhanced engine thermal efficiency, a comprehensive characterization of the automotive gasoline fuel spray has become essential. The acquisition of accurate and repeatable spray data is even more critical when a combustion strategy such as gasoline direct injection is to be utilized. Without industry-wide standardization of testing procedures, large variablilities have been experienced in attempts to verify the claimed spray performance values for the Sauter mean diameter, Dv90, tip penetration and cone angle of many types of fuel sprays. A new SAE Recommended Practice document, J2715, has been developed by the SAE Gasoline Fuel Injection Standards Committee (GFISC) and is now available for the measurement and characterization of the fuel sprays from both gasoline direct injection and port fuel injection injectors.
X