Refine Your Search

Topic

Author

Search Results

Journal Article

Investigation on the Effect of Very High Fuel Injection Pressure on Soot-NOx Emissions at High Load in a Passenger Car Diesel Engine

2009-06-15
2009-01-1930
Previous research has shown that elevating fuel injection pressure results in better air-fuel mixture formation, allowing for a further increase in maximum exhaust gas recirculation (EGR) rate while consequently reducing NOx emissions. The aim of this paper is to find out whether there is an optimum injection pressure for lowest soot-NOx emissions at a given boost pressure in high-speed diesel engines. Experiments are carried out on a single-cylinder research engine with a prototype common-rail system, capable of more than 200 MPa injection pressure. The effect of injection pressure on soot-NOx formation is investigated for a variety of boost conditions, representing the conditions of single to multi-stage turbocharger systems. Analysis of the data is performed at the application relevant soot to NOx ratio of approximately 1:10. It is observed that above a critical injection pressure, soot-NOx emissions are not reduced any further.
Journal Article

Engine Start-Up Optimization using the Transient Burn Rate Analysis

2011-04-12
2011-01-0125
The introduction of CO₂-reduction technologies like Start-Stop or the Hybrid-Powertrain and the future emission legislation require a detailed optimization of the engine start-up. The combustion concept development as well as the calibration of the ECU makes an explicit thermodynamic analysis of the combustion process during the start-up necessary. Initially, the well-known thermodynamic analysis of in-cylinder pressure at stationary condition was transmitted to the highly non-stationary engine start-up. There, the current models for calculation of the transient wall heat fluxes were found to be misleading. Therefore, adaptations to the start-up conditions of the known models by Woschni, Hohenberg and Bargende were introduced for calculation of the wall heat transfer coefficient in SI engines with gasoline direct injection. This paper shows how the indicated values can be measured during the engine start-up.
Journal Article

Optical Investigations of the Ignition-Relevant Spray Characteristics from a Piezo-Injector for Spray-Guided Spark-Ignited Engines

2015-01-01
2014-01-9053
The spray-guided combustion process offers a high potential for fuel savings in gasoline engines in the part load range. In this connection, the injector and spark plug are arranged in close proximity to one another, as a result of which mixture formation is primarily shaped by the dynamics of the fuel spray. The mixture formation time is very short, so that at the time of ignition the velocity of flow is high and the fuel is still largely present in liquid form. The quality of mixture formation thus constitutes a key aspect of reliable ignition. In this article, the spray characteristics of an outward-opening piezo injector are examined using optical testing methods under pressure chamber conditions and the results obtained are correlated with ignition behaviour in-engine. The global spray formation is examined using high-speed visualisation methods, particularly with regard to cyclical fluctuations.
Journal Article

Predictive Multi-Objective Operation Strategy Considering Battery Cycle Aging for Hybrid Electric Vehicles

2018-04-03
2018-01-1011
Due to the new CO2 targets for vehicles, electrification of powertrains and operation strategies for electrified powertrains have drawn more attention. This article presents a predictive multi-objective operation strategy for hybrid electric vehicles (HEVs), which simultaneously minimizes the fuel consumption and the cycle aging of traction batteries. This proposed strategy shows better performance by using predictive information and high robustness to inaccuracy of predictive information. In this work, the benefits of the developed operation strategies are demonstrated in a strong hybrid electric vehicle (sHEV) with P2-configuration. For the cycle aging of a lithium-ion battery, an empirical model is built up with Gaussian processes based on experimental data.
Journal Article

Estimation of Cylinder-Wise Combustion Features from Engine Speed and Cylinder Pressure

2008-04-14
2008-01-0290
Advanced engine control and diagnosis strategies for internal combustion engines need accurate feedback information from the combustion engine. The feedback information can be utilized to control combustion features which allow the improvement of engine's efficiency through real-time control and diagnosis of the combustion process. This article describes a new method for combustion phase and IMEP estimation using one in-cylinder pressure and engine speed. In order to take torsional deflections of the crankshaft into account a gray-box model of the crankshaft is identified by subspace identification. The modeling accuracy is compared to a stiff physical crankshaft model. For combustion feature estimation, the identified MISO (multiple input single output) system is inverted. Experiments for a four-cylinder spark-ignition engine show the superior performance of the new method for combustion feature estimation compared to a stiff model approach.
Journal Article

Investigations on the Transient Wall Heat Transfer at Start-Up for SI Engines with Gasoline Direct Injection

2009-04-20
2009-01-0613
The introduction of CO2-reduction technologies like Start-Stop or the Hybrid-Powertrain and the future emissions regulations require a detailed optimization of the engine start-up. The combustion concept development as well as the calibration of the ECU makes it necessary to carry out an explicit thermodynamic analysis of the combustion process during the start-up. As of today, the well-known thermodynamic analysis using in-cylinder pressure traces at stationary condition is transmitted to the highly dynamic engine start-up. Due to this approximation the current models for calculation of the transient wall heat fluxes by Woschni, Hohenberg and Bargende do not lead to desired results. But with a fraction of approximately 40 % of the burnt fuel energy, the wall heat is very important for the calculation of energy balance and for the combustion process analysis during start-up.
Journal Article

Data Based Cylinder Pressure Modeling for Direct-injection Diesel Engines

2009-04-20
2009-01-0679
In this article a new zero-dimensional model is presented for simulating the cylinder pressure in direct injection diesel engines. The model enables the representation of current combustion processes considering multiple injections, high exhaust gas recirculation rates, and turbocharging. In these methods solely cycle-resolved, scalar input variables from the electronic control unit in combination with empirical parameters are required for modeling. The latter are adapted automatically to different engines or modified applications using measured cylinder pressure traces. The verification based on measurements within the entire operating range from engines of different size and type proves the universal applicability and high accuracy of the proposed method.
Journal Article

Investigation of the Parameters Influencing the Spray-Wall Interaction in a GDI Engine - Prerequisite for the Prediction of Particulate Emissions by Numerical Simulation

2013-04-08
2013-01-1089
Due to the EU6 emission standard that will be mandatory starting in September 2014 the particulate emissions of GDI engines come into the focus of development. For this reason, soot and the mechanisms responsible for the soot formation are of particular importance. A very significant source of particulate emissions from engines with gasoline direct injection is the wall film formation. Therefore, the analysis of soot emission sources in the CFD calculation requires a detailed description of the entire underlying model chain, with special emphasis on the spray-wall interaction and the wall film dynamics. The validation of the mentioned spray-wall interaction and wall film models is performed using basic experimental investigations, like the infrared-thermography and fluorescence based measurements conducted at the University of Magdeburg.
Technical Paper

The ABS 6S/4K - A Modular System for Simplified Installation in Tractors, Semi-trailers and Trailers

1990-10-01
902213
Today's ABS sytems for commercial vehicles and trailers reflect specific solutions for individual vehicle model wiring and control features. In addition, the chassis mounting requirements for trailer applications uses a separate sealed housing for the relay and other sensitive components. A logical progression of design development resulted in the new ABS 6S/4K open system with the ability of being adaptable to specific vehicle control requirements. A variety of different component arrangements can be accommodated. Accordingly, it does not require a standard wiring harness. Wiring is left optional for the specific vehicle configuration. The housing may be frame mounted without any special protection and therefore can cover both trailer and tractor applications. The housing is designed to provide necessary protection from water and dirt. The electronic senses the peripheral component configuration via a simple “learning” procedure.
Journal Article

Novel Transient Wall Heat Transfer Approach for the Start-up of SI Engines with Gasoline Direct Injection

2010-04-12
2010-01-1270
The introduction of CO₂-reduction technologies like Start-Stop or the Hybrid-Powertrain and the future emissions limits require a detailed optimization of the engine start-up. The combustion concept development as well as the calibration of the ECU makes an explicit thermodynamic analysis of the combustion process during the start-up necessary. Initially, the well-known thermodynamic analysis of in-cylinder pressure at stationary condition was transmitted to the highly non-stationary engine start-up. There, the current models for calculation of the transient wall heat fluxes were found to be misleading. But with a fraction of nearly 45% of the burned fuel energy, the wall heat is very important for the calculation of energy balance and for the combustion process analysis.
Technical Paper

Luminance Measurement, Contrast Sensitivity, Homogeneity: New Approaches of Defining the Quality of Headlamps

1998-02-23
980324
The conventional measurements to describe the photometric quality of headlamps usually only comprise the luminous flux and the illuminance (resp. the luminous intensity) in several measuring points given by Type Approval Legislation. Practically, these photometric measurements do not describe the visual impression of a headlamp light distribution sufficiently, neither in lab nor in real street geometry. With the clear outer lens headlamps introduced recently, filament images are projected directly onto the screens or streets, thus giving new impulses to research. Starting from the established photometric practice, other types of measurements and physiological fundamentals will be discussed. The basic tools to make physical measurement and physiological impression comparable, e.g. in terms of homogeneity, are shown.
Technical Paper

Dynamic Route Guidance - Different Approaches to the System Concepts

1998-02-23
980603
Dynamic route guidance is a main feature when discussing traffic telematics systems. At the present time, several system concepts are in the development or implementation stage. The key elements of dynamic route guidance systems are illustrated in the following. Two approaches could be used when designing the system architecture: 1. Centralized routing in traffic information centers combined with on-board terminals. 2. Mobile routing by on-board navigation units which use information received from traffic information centers. The different approaches are presented in this paper. The influences on component design and the effects on communication needs are discussed. This leads to the “hybrid” system architecture which is presented including implementation examples.
Technical Paper

Methods of On-Board Misfire Detection

1990-02-01
900232
Misfiring of the engine can cause damage to the catalyst within short time and increase emissions. Under misfiring conditions, unburned fuel and oxygen are pumped into the catalyst, where its combustion heavily increases the temperature. For this reason there is a demand for fast detection of misfiring. Once judged, one can take countermeasures to avoid further temperature rise. Two methods of misfire detection with the prospect of future use in series production are discussed. A first approach uses the trace shape of the λ-sensor signal for evaluation. The second approach uses the speed fluctuations of the engine for detection. Efficient algorithms give the possibility of misfire detection in the full load-speed range with reasonable effort to protect the catalyst. However there will remain some misfire conditions, increasing the emissions above regulation limits, that cannot be detected by those methods.
Technical Paper

Crank Angle Resolved Determination of Fuel Concentration and Air/Fuel Ratio in a SI-Internal Combustion Engine Using a Modified Optical Spark Plug

2007-04-16
2007-01-0644
A fiber optical sensor system was used to detect the local fuel concentration in the vicinity of the spark position in a cylinder of a four-stroke SI production engine. The fuel concentration was determined by the infrared absorption method, which allows crank angle resolved fuel concentration measurements during multiple successive engine cycles. The sensor detects the attenuation of infrared radiation in the 3.4 μm wavelength region due to the infrared vibrational-rotational absorption band of hydrocarbons (HC). The absorption path was integrated in a modified spark plug and a tungsten halide lamp was used as an infrared light source. All investigations were carried out on a four-stroke spark ignition engine with fuel injection into the intake manifold. The measurements were made under starting conditions of the engine, which means a low engine speed. The engine operated with common gasoline (Euro Super) at different air/fuel-ratios.
Technical Paper

Investigation into the Formation and Prevention of Internal Diesel Injector Deposits

2008-04-14
2008-01-0926
1 High precision high pressure diesel common rail fuel injection systems play a key role in emission control, fuel consumption and driving performance. Deposits have been observed on internal injector components, for example in the armature assembly, in the slots of the piston and on the nozzle needle. The brownish to colourless deposits can adversely impact driveability and result in non-compliance with the Euro 4 or Euro 5 emission limits. The deposits have been extensively studied to understand their composition and their formation mechanism. Due to the location of these deposits, the influence of combustion gas can be completely ruled out. In fact, their formation can be explained by interactions of certain diesel fuel additives, including di- and mono-fatty acids. This paper describes the methodology used and the data generated that support the proposed mechanisms. Moreover, approaches to avoid such interactions are discussed.
Technical Paper

Application of ISO 26262 in Distributed Development ISO 26262 in Reality

2009-04-20
2009-01-0758
With its origin in the process industry, the IEC 61508 „Functional safety of electrical/electronic/programmable electronic safety-related systems” is not fully applicable in the automotive industry, forcing the automotive industry to work on an automotive specific adaptation (ISO 26262 “Functional Safety – Road Vehicles”). This ISO 26262 describes an ideal development process that starts from scratch. In reality development activities are often split locally and in time. This can only be handled with a world wide standard as a basis of a common approach, wide enough to give enough freedom to adapt to diverse boundary conditions, but tight enough to hinder local interpretations to be that far, that a complete safety case becomes impossible. Therefore a strict world-wide standard which allows compatible interpretations is mandatory.
Technical Paper

Domain Control Units - the Solution for Future E/E Architectures?

2010-04-12
2010-01-0686
In order to master the increasing complexity of electrical/electronic (E/E) systems in vehicles, E/E architecture design has become an established discipline. The task of the E/E architecture design is to come up with solutions to challenging and often contradictory requirements such as reduced cost and increased flexibility / scalability. One way to optimize the E/E architecture in terms of cost (electronics & wiring harness) is to integrate functions. This can be done by either combining functions from multiple ECUs into a single ECU or by introducing Domain Control Units. Domain Control Units provide the main software functionality for a vehicle domain, while relegating the basic functions of actuator control to connected intelligent actuators. Depending on the different market segments (low price, volume and premium) and the different vehicle domains, the actual usage of Domain Control Units can be quite different and sometimes questionable.
Technical Paper

Preparing for CARTRONIC - Interface and New Strategies for Torque Coordination and Conversion in a Spark Ignition Engine-Management System

2001-03-05
2001-01-0268
A major trend in modern vehicle control is the increase of complexity and interaction of formerly autonomous systems. In order to manage the resulting network of more and more integrated (sub)systems Bosch has developed an open architecture called CARTRONIC for structuring the entire vehicle control system. Structuring the system in functionally independent components improves modular software development and allows the integration of new elements such as integrated starter/generator and the implementation of advanced control concepts as drive train management. This approach leads to an open structure on a high level for the design of advanced vehicle control systems. The paper describes the integration of the spark-ignition (SI) engine management system (EMS) into a CARTRONIC conform vehicle coordination requiring a new standard interface between the vehicle coordination and the EMS level.
Technical Paper

Analysis of Flow Patterns inside an Autothermal Gasoline Reformer

2001-05-07
2001-01-1917
The present paper concentrates on the option of catalytic autothermal reforming of gasoline for fuel cell applications. Major parameters of this process are the “Steam to Carbon Ratio” S/C and the air to fuel ratio λ. Computations assuming thermodynamic equilibrium in the autothermal reactor outlet (ATR) were carried out to attain information about their proper choice, as failure in adjusting the parameters within narrow limits has severe consequences on the reforming process. In order to quantify velocity distribution just ahead the catalyst and to evaluate mixing uniformity we designed an ATR featuring an optical access: Thus flow visualization using PIV (Particle Image Velocimetry) and LIF (Laser Induced Fluorescence) technique is possible. Preliminary PIV-results are presented and compared with CFD computations (Computational Fluid D ynamics).
Technical Paper

Development of an Engine Management Strategy and a Cost Effective Catalyst System to Meet SULEV Emission Requirements Demonstrated on a V-6 Engine

2004-03-08
2004-01-1490
The study presented in this paper focuses on measures to minimize exhaust gas emissions to meet SULEV targets on a V6 engine by using a cost efficient system configuration. The study consists of three parts. A) In the first stage, the influence of engine management both on raw emissions and catalyst light off performance was optimized. B) Afterwards, the predefined high cell density catalyst system was tested on an engine test bench. In this stage, thermal data and engine out emissions were used for modeling and prediction of light-off performance for further optimized catalyst concepts. C) In the final stage of the program, the emission performance of the test matrix, including high cell density as well as multifunctional single substrate systems, are studied during the FTP cycle. The presented results show the approach to achieve SULEV emission compliance with innovative engine control strategies in combination with a cost effective metallic catalyst design.
X