Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

Investigation on the Effect of Very High Fuel Injection Pressure on Soot-NOx Emissions at High Load in a Passenger Car Diesel Engine

2009-06-15
2009-01-1930
Previous research has shown that elevating fuel injection pressure results in better air-fuel mixture formation, allowing for a further increase in maximum exhaust gas recirculation (EGR) rate while consequently reducing NOx emissions. The aim of this paper is to find out whether there is an optimum injection pressure for lowest soot-NOx emissions at a given boost pressure in high-speed diesel engines. Experiments are carried out on a single-cylinder research engine with a prototype common-rail system, capable of more than 200 MPa injection pressure. The effect of injection pressure on soot-NOx formation is investigated for a variety of boost conditions, representing the conditions of single to multi-stage turbocharger systems. Analysis of the data is performed at the application relevant soot to NOx ratio of approximately 1:10. It is observed that above a critical injection pressure, soot-NOx emissions are not reduced any further.
Journal Article

Engine Start-Up Optimization using the Transient Burn Rate Analysis

2011-04-12
2011-01-0125
The introduction of CO₂-reduction technologies like Start-Stop or the Hybrid-Powertrain and the future emission legislation require a detailed optimization of the engine start-up. The combustion concept development as well as the calibration of the ECU makes an explicit thermodynamic analysis of the combustion process during the start-up necessary. Initially, the well-known thermodynamic analysis of in-cylinder pressure at stationary condition was transmitted to the highly non-stationary engine start-up. There, the current models for calculation of the transient wall heat fluxes were found to be misleading. Therefore, adaptations to the start-up conditions of the known models by Woschni, Hohenberg and Bargende were introduced for calculation of the wall heat transfer coefficient in SI engines with gasoline direct injection. This paper shows how the indicated values can be measured during the engine start-up.
Journal Article

A Thermodynamic Study on Boosted HCCI: Motivation, Analysis and Potential

2010-04-12
2010-01-1082
Due to the increasingly stricter emission legislation and growing demands for lower fuel consumption, there have been significant efforts to improve combustion efficiency while satisfying the emission requirements. Homogeneous Charge Compression Ignition (HCCI) combined with turbo/supercharging on gasoline engines provides a particularly promising and, at the same time, a challenging approach. Naturally aspirated (n.a.) HCCI has already shown a considerable potential of about 14% in the New European Driving Cycle (NEDC) compared with a conventional 4-cylinder 2.0 liter gasoline Port Fuel Injection (PFI) engine without any advanced valve-train technology. The HCCI n.a. operation range is air breathing limited due to the hot residuals required for the self-ignition and to slow down reaction kinetics, and therefore is limited to a part-load operation area.
Journal Article

Online Engine Speed Based Adaptation of Air Charge for Two- Wheelers

2013-10-15
2013-32-9037
Regarding the strongly growing two-wheeler market fuel economy, price and emission legislations are in focus of current development work. Fuel economy as well as emissions can be improved by introduction of engine management systems (EMS). In order to provide the benefits of an EMS for low cost motorcycles, efforts are being made at BOSCH to reduce the costs of a port fuel injection (PFI) system. The present paper describes a method of how to reduce the number of sensors of a PFI system by the use of sophisticated software functions based on high-resolution engine speed evaluation. In order to improve the performance of a system working without a MAP-sensor (manifold air pressure sensor) an air charge feature (ACFn) based on engine speed is introduced. It is shown by an experiment that ACFn allows to detect and adapt changes in manifold air pressure. Cross-influences on ACFn are analyzed by simulations and engine test bench measurements.
Journal Article

Advantages and Challenges of Lean Operation of Two-Stroke Engines for Hand-Held Power Tools

2014-11-11
2014-32-0009
One of the most significant current discussions worldwide is the anthropogenic climate change accompanying fossil fuel consumption. Sustainable development in all fields of combustion engines is required with the principal objective to enhance efficiency. This certainly concerns the field of hand-held power tools as well. Today, two-stroke SI engines equipped with a carburetor are the most widely used propulsion technology in hand-held power tools like chain saws and grass trimmers. To date, research tended to focus on two-stroke engines with rich mixture setting. In this paper the advantages and challenges of leaner and/or lean operation are discussed. Experimental investigations regarding the influence of equivalence ratio on emissions, fuel consumption and power have been performed. Accompanying 3D-CFD simulations support the experiments in order to gain insight into these complex processes. The investigations concentrate on two different mixture formation processes, i.e.
Journal Article

Optical Investigations of the Ignition-Relevant Spray Characteristics from a Piezo-Injector for Spray-Guided Spark-Ignited Engines

2015-01-01
2014-01-9053
The spray-guided combustion process offers a high potential for fuel savings in gasoline engines in the part load range. In this connection, the injector and spark plug are arranged in close proximity to one another, as a result of which mixture formation is primarily shaped by the dynamics of the fuel spray. The mixture formation time is very short, so that at the time of ignition the velocity of flow is high and the fuel is still largely present in liquid form. The quality of mixture formation thus constitutes a key aspect of reliable ignition. In this article, the spray characteristics of an outward-opening piezo injector are examined using optical testing methods under pressure chamber conditions and the results obtained are correlated with ignition behaviour in-engine. The global spray formation is examined using high-speed visualisation methods, particularly with regard to cyclical fluctuations.
Journal Article

Online Engine Speed based Adaptation of Combustion Phasing and Air-Fuel Ratio

2014-11-11
2014-32-0076
Equipping low cost two-wheelers with engine management systems (EMS) enables not only a reduction of emissions but also an improvement in fuel consumption and system robustness. These benefits are accompanied by initially higher system costs compared to carburetor systems. Therefore, intelligent software solutions are developed by Bosch, which enable a reduction of the necessary sensors for a port fuel injection system (PFI) and furthermore provide new possibilities for combustion control. One example for these intelligent software solutions is a model based evaluation of the engine speed. By use of the information contained in the engine speed signal, characteristic features like air charge, indicated mean effective pressure (imep) and combustion phasing are derivable. The present paper illustrates how these features could be used to reduce the system costs and to improve fuel consumption and system robustness.
Journal Article

Online Engine Speed based Altitude Adaptation of Air Charge and Limp Home for Two-Wheelers

2014-11-11
2014-32-0067
Cost reduction of engine management systems (EMS) for two-wheeler applications is the key to utilize their potentials compared to carburetor bikes regarding emissions, fuel economy and system robustness. In order to reduce the costs of a system with port fuel injection (PFI) Bosch is developing an EMS without a manifold air pressure (MAP) sensor. The pressure sensor is usually used to compensate for different influences on the air mass, which cannot be detected via the throttle position sensor (TPS) and mean engine speed. Such influences are different leakage rates of the throttle body and changing ambient conditions like air pressure. Bosch has shown in the past that a virtual sensor relying on model based evaluation of engine speed can be used for a detection of leakage air mass in idling to improve the pre-control of the air-fuel ratio. This provides a functionality which so far was only possible with an intake pressure sensor.
Technical Paper

Visualization of Turbulence Anisotropy in the In-cylinder Flow of Internal Combustion Engines

2020-04-14
2020-01-1105
Turbulence anisotropy has a great influence on mixture formation and flame propagation in internal combustion engines. However, the visualization of turbulence in simulations is not straightforward; traditional methods lack the ability to display the anisotropic properties in the engine geometry. Instead, they use invariant maps, and important information about the locality of the turbulence anisotropy is lost. This paper overcomes this shortcoming by visualizing the anisotropy directly in the physical domain. Componentality contours are applied to directly visualize the anisotropic properties of turbulence in the three-dimensional engine geometry. Using an RGB (red, green, blue) color map, the three limiting states of turbulence (one-component, axisymmetric two-component and isotropic turbulence) are displayed in the three-dimensional physical domain.
Technical Paper

Experimental Investigation of the Influence of Ignition System Parameters on Combustion in a Rapid Compression-Expansion Machine

2020-04-14
2020-01-1122
Lean burn combustion concepts with high mean effective pressures are being pursued for large gas engines in order to meet future stringent emission limits while maintaining high engine efficiencies. Since severe boundary conditions for the ignition process are encountered with these combustion concepts, the processes of spark ignition and flame initiation are important topics of applied research, which aims to avoid misfiring and to keep cycle-to-cycle combustion variability within reasonable limits. This paper focuses on the fundamental investigation of early flame kernel development using different ignition system settings. The investigations are carried out on a rapid compression-expansion machine in which the spark ignition process can be observed under engine-like pressure and excess air ratio conditions while low flow velocities are maintained.
Journal Article

Fuel-Independent Particulate Emissions in an SIDI Engine

2015-04-14
2015-01-1081
The fuel-independent particulate emissions of a direct injection gasoline engine were investigated. This was done by running the engine with reference gasoline at four different loads and then switching to hydrogen or methane port fuel operation and comparing the resulting particulate emissions and their size distribution. Differences in the combustion characteristics of hydrogen and gasoline were accounted for by diluting the inlet air with nitrogen and matching the pressure or heat release traces to those of gasoline operation. Methane operation is expected to generate particulate emissions lower by several orders of magnitude compared to gasoline and hydrogen does not contribute to carbon soot formation because of the lack of carbon atoms in the molecule. Thus, any remaining particulate emissions at hydrogen gas operation must arise from non fuel related sources, e.g. from lubrication oil, metal abrasion or inlet air.
Journal Article

Evaporation and Cold Start Behavior of Bio-Fuels in Non-Automotive Applications

2016-11-08
2016-32-0034
Worldwide increasing energy consumption, decreasing energy resources and continuous restriction of emission legislation cause a rethinking in the development of internal combustion engines and fuels. Alternative renewable fuels, so called bio-fuels, have the potential to contribute to environmentally friendly propulsion systems. This study concentrates on the usage of alcohol fuels like ethanol, methanol and butanol in non-automotive high power engines, handheld power tools and garden equipment with the focus on mixture formation and cold start capability. Although bio-fuels have been investigated intensely for the use in automotive applications yet, the different propulsion systems and operation scenarios of nonautomotive applications raise the need for specific research. A zero dimensional vaporization model has been set up to calculate the connections between physical properties and mixture formation.
Journal Article

Mass Balancing Measures of a Linkage-Based Extended Expansion Engine

2016-11-08
2016-32-0096
The enhancement of efficiency will play a more and more important role in the development of future (small) internal combustion engines. In recent years, the Atkinson (or Extended Expansion) cycle, realized over the crank drive, attracted increasing attention. Several OEMs have investigated this efficiency-increasing principle in the whole range from small engines up to automotive engines until now. In prior publications, the authors outlined the remarkable efficiency potentials of an Extended Expansion (EE) cycle. However, for an internal combustion engine, a smooth running performance as well as low vibrations and noise emissions are relevant aspects. This is especially true for an Extended Expansion engine realized over the crank drive. Therefore, design measures concerning friction and NVH need to be taken to enable possible series production status. Basically, these measures strongly depend on the reduction of the free mass forces and moments.
Journal Article

Experimental and Simulative Friction Analysis of a Fired Passenger Car Diesel Engine with Focus on the Cranktrain

2016-10-17
2016-01-2348
The CO2 reduction required by legislation represents a major challenge to the OEMs now and in the future. The use of fuel consumption saving potentials of friction-causing engine components can make a significant contribution. Boundary potential aspects of a combustion engine offer a good opportunity for estimating fuel consumption potentials. As a result, the focus of development is placed on components with great saving potentials. Friction investigations using the motored method are still state of the art. The disadvantages using this kind of friction measurement method are incorrect engine operating conditions like cylinder pressure, piston and liner temperatures, piston secondary movement and warm deformations which can lead to incorrect measurement results compared to a fired engine. In the past, two friction measurement methods came up, the so called floating liner method and a motored friction measurement with external charging.
Journal Article

Experimental Optimization of a Small Bore Natural Gas-Diesel Dual Fuel Engine with Direct Fuel Injection

2016-04-05
2016-01-0783
Dual fuel combustion processes, which burn varying ratios of natural gas and diesel, are an attempt to reach high efficiencies similar to diesel engines while exploiting the CO2 savings potential of natural gas. As shown in earlier studies, the main challenge of this combustion process is the high emission of unburned hydrocarbons during low load operation. Many publications have focused on a layout which utilizes port injection of natural gas and a direct injection of diesel to initiate combustion. However, previous studies indicated that a sequential direct injection of both fuels is more promising. It enables charge stratification of natural gas and air, whereby a remarkable reduction of the unburned hydrocarbon emissions was observed. This work develops this approach further, utilizing a low pressure direct injection of natural gas.
Journal Article

Advanced Knock Detection for Diesel/Natural Gas Engine Operation

2016-04-05
2016-01-0785
As emission limits become increasingly stringent and the price of gaseous fuels decreases, more emphasis is being placed on promoting gas engines. In the field of large engines for power generation, dual fuel combustion concepts that run on diesel/natural gas are particularly attractive. Knock in diesel/natural gas dual fuel engines is a well known yet not fully understood complex phenomenon that requires consideration in any attempt to increase load and efficiency. Thus combustion concept development requires a reliable yet robust methodology for detecting knock in order to ensure knock-free engine operation. Operating parameters such as rail pressure, start of injection and amount of diesel injected are the factors that influence oscillations in the in-cylinder pressure trace after the start of combustion. Oscillations in the pre-mixed combustion phase, or ringing, are caused by the rapid conversion of large parts of the injected diesel.
Technical Paper

Analysis of a Prechamber Ignited HPDI Gas Combustion Concept

2020-04-14
2020-01-0824
High-pressure direct injection (HPDI) of natural gas into the combustion chamber enables a non-premixed combustion regime known from diesel engines. Since knocking combustion cannot occur with this combustion process, an increase in the compression ratio and thus efficiency is possible. Due to the high injection pressures required, this concept is ideally suited to applications where liquefied natural gas (LNG) is available. In marine applications, the bunkering of and operation with LNG is state-of-the-art. Existing HPDI gas combustion concepts typically use a small amount of diesel fuel for ignition, which is injected late in the compression stroke. The diesel fuel ignites due to the high temperature of the cylinder charge. The subsequently injected gas ignites at the diesel flame. The HPDI gas combustion concept presented in this paper is of a monovalent type, meaning that no fuel other than natural gas is used.
Journal Article

New and Innovative Combustion Systems for the H2-ICE: Compression Ignition and Combined Processes

2009-04-20
2009-01-1421
Hydrogen nowadays is considered one promising energy carrier for future mobility scenarios. Its application as a fuel in ICEs greatly benefits from Direct Injection (DI) strategies, which help to reduce the disadvantages of PFI systems such as air displacement effects, knocking, backfiring and low power density. In SI-engines one appropriate way to increase efficiency is the reduction of wall heat losses by jet- and/or wall-guided mixture formation systems. In theory, Compression Ignition (CI) systems employing a diffusion type of combustion allow for a significant raise in compression ratio and, thus, are likely to excel the SI concept in terms of efficiency. The following paper deals with results obtained from investigations on H2 Compression-Ignition (H2-CI) combustion systems by employing both thermodynamic research engines and 3D CFD simulation.
Journal Article

Fault Diagnosis of Fully Variable Valve Actuators on a Four Cylinder Camless Engine

2008-04-14
2008-01-1353
Fully Variable Valve Actuation (FVVA) systems enable to employ a wide range of combustion strategies by providing the actuation of a gas exchange valve at an arbitrary point in time, with variable lift and adjustable ramps for opening and closing. Making such a system ready for the market requires appropriate fault-diagnostic functionality. Here, we focus on diagnosis possibilities by using air intake system sensors such as Manifold Absolute Pressure (MAP) sensors. Results obtained on a 4-cylinder test bench engine are presented for the early intake opening strategy under different loads, and at medium range rotational speeds on steady-state conditions. It is shown that detection and identification of the different critical faults on each actuator is possible by using a Fourier series signal model of the MAP sensor.
Journal Article

Estimation of Cylinder-Wise Combustion Features from Engine Speed and Cylinder Pressure

2008-04-14
2008-01-0290
Advanced engine control and diagnosis strategies for internal combustion engines need accurate feedback information from the combustion engine. The feedback information can be utilized to control combustion features which allow the improvement of engine's efficiency through real-time control and diagnosis of the combustion process. This article describes a new method for combustion phase and IMEP estimation using one in-cylinder pressure and engine speed. In order to take torsional deflections of the crankshaft into account a gray-box model of the crankshaft is identified by subspace identification. The modeling accuracy is compared to a stiff physical crankshaft model. For combustion feature estimation, the identified MISO (multiple input single output) system is inverted. Experiments for a four-cylinder spark-ignition engine show the superior performance of the new method for combustion feature estimation compared to a stiff model approach.
X