Refine Your Search

Search Results

Viewing 1 to 9 of 9
Journal Article

Measurements of Liquid Length, Vapor Penetration, Ignition Delay, and Flame Lift-Off Length for the Engine Combustion Network ‘Spray B’ in a 2.34 L Heavy-Duty Optical Diesel Engine

2016-04-05
2016-01-0743
This paper presents new measurements of liquid and liftoff lengths, vapor penetration, and ignition delay using the Engine Combustion Network (ECN) ‘Spray B’ injector in a 2.34 L skip-fired heavy-duty optical engine. The data from the Spray B injector, having three 90-micron holes, are compared with previously existing constant-volume vessel data using both the Spray B injector as well as the ECN Spray A injector, which has a single 90-micron axial hole. The new data were acquired using Mie scattering, OH* chemiluminescence imaging, schlieren imaging, and incylinder pressure measurements. This paper presents data from estimated isentropic-core top-dead-center conditions with ambient densities of 15.2 and 22.8 kg/m3, temperatures of 800, 900, and 1000 K, and for both non-reacting (0% and 7.5% O2) and reacting (13, 15, and 21% O2) injections of n-dodecane at fuel-rail pressures of 500, 1000, and 1500 bar.
Journal Article

Effects of Post-Injection Strategies on Near-Injector Over-Lean Mixtures and Unburned Hydrocarbon Emission in a Heavy-Duty Optical Diesel Engine

2011-04-12
2011-01-1383
Post-injection strategies aimed at reducing engine-out emissions of unburned hydrocarbons (UHC) were investigated in an optical heavy-duty diesel engine operating at a low-load, low-temperature combustion (LTC) condition with high dilution (12.7% intake oxygen) where UHC emissions are problematic. Exhaust gas measurements showed that a carefully selected post injection reduced engine-out load-specific UHC emissions by 20% compared to operation with a single injection in the same load range. High-speed in-cylinder chemiluminescence imaging revealed that without a post injection, most of the chemiluminescence emission occurs close to the bowl wall, with no significant chemiluminescence signal within 27 mm of the injector. Previous studies have shown that over-leaning in this near-injector region after the end of injection causes the local equivalence ratio to fall below the ignitability limit.
Journal Article

Optical Investigation of the Reduction of Unburned Hydrocarbons Using Close-Coupled Post Injections at LTC Conditions in a Heavy-Duty Diesel Engine

2013-04-08
2013-01-0910
Partially premixed low-temperature combustion (LTC) using exhaust-gas recirculation (EGR) has the potential to reduce engine-out NOx and soot emissions, but increased unburned hydrocarbon (UHC) emissions need to be addressed. In this study, we investigate close-coupled post injections for reducing UHC emissions. By injecting small amounts of fuel soon after the end of the main injection, fuel-lean mixtures near the injector that suffer incomplete combustion can be enriched with post-injection fuel and burned to completion. The goal of this work is to understand the in-cylinder mechanisms affecting the post-injection efficacy and to quantify its sensitivity to operational parameters including post-injection duration, injection dwell, load, and ignition delay time of the post-injection mixture.
Technical Paper

Diffusion-Flame / Wall Interactions in a Heavy-Duty DI Diesel Engine

2001-03-05
2001-01-1295
Over the past decade, laser diagnostics have improved our understanding of many aspects of diesel combustion. However, interactions between the combusting fuel jet and the piston-bowl wall are not well understood. In heavy-duty diesel engines, with typical fuels, these interactions occur with the combusting vapor-phase region of the jet, which consists of a central region containing soot and other products of rich-premixed combustion, surrounded by a diffusion flame. Since previous work has shown that the OH radical is a good marker of the diffusion flame, planar laser-induced fluorescence (PLIF) imaging of OH was applied to an investigation of the diffusion flame during wall interaction. In addition, simultaneous OH PLIF and planar laser-induced incandescence (PLII) soot imaging was applied to investigate the likelihood for soot deposition on the bowl wall.
Technical Paper

DOE's Effort to Reduce Truck Aerodynamic Drag Through Joint Experiments and Computations

2005-11-01
2005-01-3511
At 70 miles per hour, overcoming aerodynamic drag represents about 65% of the total energy expenditure for a typical heavy truck vehicle. The goal of this US Department of Energy supported consortium is to establish a clear understanding of the drag producing flow phenomena. This is being accomplished through joint experiments and computations, leading to the intelligent design of drag reducing devices. This paper will describe our objective and approach, provide an overview of our efforts and accomplishments related to drag reduction devices, and offer a brief discussion of our future direction.
Technical Paper

Progress in Reducing Aerodynamic Drag for Higher Efficiency of Heavy Duty Trucks (Class 7-8)

1999-04-26
1999-01-2238
This paper describes research and development for reducing the aerodynamic drag of heavy vehicles by demonstrating new approaches for the numerical simulation and analysis of aerodynamic flow. In addition, greater use of newly developed computational tools holds promise for reducing the number of prototype tests, for cutting manufacturing costs, and for reducing overall time to market. Experimental verification and validation of new computational fluid dynamics methods are also an important part of this approach. Experiments on a model of an integrated tractor-trailer are underway at NASA Ames Research Center and the University of Southern California. Companion computer simulations are being performed by Sandia National Laboratories, Lawrence Livermore National Laboratory, and California Institute of Technology using state-of- the-art techniques, with the intention of implementing more complex methods in the future.
Journal Article

Dilution and Injection Pressure Effects on Ignition and Onset of Soot at Threshold-Sooting Conditions by Simultaneous PAH-PLIF and Soot-PLII Imaging in a Heavy Duty Optical Diesel Engine

2019-04-02
2019-01-0553
Although accumulated in-cylinder soot can be measured by various optical techniques, discerning soot formation rates from oxidation rates is more difficult. Various optical measurements have pointed toward ways to affect in-cylinder soot oxidation, but evidence of effects of operational variables on soot formation is less plentiful. The formation of soot and its precursors, including polycyclic aromatic hydrocarbons (PAHs), are strongly dependent on temperature, so factors affecting soot formation may be more evident at low-temperature combustion conditions. Here, in-cylinder PAHs are imaged by planar laser-induced fluorescence (PAH-PLIF) using three different excitation wavelengths of 355, 532, and 633 nm, to probe three different size-classes of PAH from 2-3 to 10+ rings. Simultaneous planar laser-induced incandescence of soot (soot-PLII) using 1064-nm excitation provides complementary imaging of soot formation near inception.
Technical Paper

Aerodynamic Drag of Heavy Vehicles (Class 7-8): Simulation and Benchmarking

2000-06-19
2000-01-2209
This paper describes research and development for reducing the aerodynamic drag of heavy vehicles by demonstrating new approaches for the numerical simulation and analysis of aerodynamic flow. Experimental validation of new computational fluid dynamics methods are also an important part of this approach. Experiments on a model of an integrated tractor-trailer are underway at NASA Ames Research Center and the University of Southern California (USC). Companion computer simulations are being performed by Sandia National Laboratories (SNL), Lawrence Livermore National Laboratory (LLNL), and California Institute of Technology (Caltech) using state-of-the-art techniques.
Journal Article

Optical Investigation of Mixture Formation in a Hydrogen-Fueled Heavy-Duty Engine with Direct-Injection

2023-04-11
2023-01-0240
Mixture formation in a hydrogen-fueled heavy-duty engine with direct injection and a nearly-quiescent top-hat combustion chamber was investigated using laser-induced fluorescence imaging, with 1,4-difluorobenzene serving as a fluorescent tracer seeded into hydrogen. The engine was motored at 1200 rpm, 1.0 bar intake pressure, and 335 K intake temperature. An outward opening medium-pressure hollow-cone injector was operated at two different injection pressures and five different injection timings from early injection during the intake stroke to late injection towards the end of compression stroke. Fuel fumigation upstream of the intake provided a well-mixed reference case for image calibration. This paper presents the evolution of in-cylinder equivalence ratio distribution evaluated during the injection event itself for the cylinder-axis plane and during the compression stroke at different positions of the light sheet within the swirl plane.
X