Refine Your Search

Search Results

Viewing 1 to 7 of 7
Technical Paper

Adaptive Optimal Management Strategy for Hybrid Vehicles Based on Pontryagin’s Minimum Principle

2020-04-14
2020-01-1191
The energy management strategies (EMS) for hybrid electric vehicles (HEV) have a great impact on the fuel economy (FE). The Pontryagin's minimum principle (PMP) has been proved to be a viable control strategy for HEV. The optimal costate of the PMP control can be determined by the given information of the driving conditions. Since the full knowledge of future driving conditions is not available, this paper proposed a dynamic optimization method for PMP costate without the prediction of the driving cycle. It is known that the lower fuel consumption the method yields, the more efficiently the engine works. The selection of costate is designed to make the engine work in the high efficiency range. Compared with the rule-based control, the proposed method by the principle of Hamiltonian, can make engine working points have more opportunities locating in the middle of high efficiency range, instead of on the boundary of high efficiency range.
Technical Paper

Influence of Port Water Injection on the Combustion Characteristics and Exhaust Emissions in a Spark-Ignition Direct-Injection Engine

2020-04-14
2020-01-0294
It is well known that engine downsizing is still the main energy-saving technology for spark-ignition direct-injection (SIDI) engine. However, with the continuous increase of the boosting ratio, the gasoline engine is often accompanied by the occurrence of knocking, which has the drawback to run the engine at retarded combustion phasing. Besides, in order to protect the turbine blades from being sintered by high exhaust temperature, the strategies of fuel enrichment are often taken to reduce the combustion temperature, which ultimately leads to a high level of particulate number emission. Therefore, to address the issues discussed above, the port water injection (PWI) techniques on a 1.2-L turbocharged, three-cylinder, SIDI engine were investigated. Measurements indicate that the optimization of spark timing has a significant impact on its performance.
Technical Paper

Study on the Optimal Control Strategy of Transient Process for Diesel Engine with Sequential Turbocharging System

2016-10-17
2016-01-2157
Three-phase sequential turbocharging system with two unequal-size turbochargers is developed to improve fuel economy performance and reduce emission of the automotive diesel engine, which satisfies wide range of intake flow demand. However, it results in complicated transient control strategies under frequently changing operating conditions. The present work aims to optimize the control scheme of boost system and fuel injection and evaluate their contributions to the improvement of transient performance. A mean value model for diesel engine was built up in SIMULINK environment and verified by experiment for transient study. Then a mathematical model of optimization issue was established. Strategies of control valves and fuel injection for typical acceleration and loading processes are obtained by coupled calculating of the simulation model and optimization algorithm.
Technical Paper

Diesel Spray Characterization at Ultra-High Injection Pressure of DENSO 250 MPa Common Rail Fuel Injection System

2017-03-28
2017-01-0821
High fuel injection pressure has been regarded as a key controlling factor for internal combustion engines to achieve good combustion performance with reduced emissions and improved fuel efficiency. For common-rail injection system (CRS) used in advanced diesel engines, fuel injection pressure can often be raised to beyond 200 MPa. Although characteristics of diesel spray has been thoroughly studied, little work has been done at ultra-high injection pressures. In this work, the characteristics of CRS diesel spray under ultra-high injection pressure up to 250 MPa was investigated. The experiments were conducted in an optically accessible high-pressure and high-temperature constant volume chamber. The injection pressure varied from 50 MPa to up to 250 MPa. Both non-evaporating condition and evaporating condition were studied. A single-hole injector was specially designed for this investigation.
Technical Paper

Analysis of Energy and Exergy Distribution for Improving Fuel Economy of Marine Low-speed Two-stroke Diesel Engine

2022-03-29
2022-01-0392
Increasingly strict emission regulations and unfavorable economic climate bring severe challenges to the energy conservation of marine low-speed engine. Besides traditional methods, the energy and exergy analysis could acknowledge the losses of fuel from a global perspective to further improve the engine efficiency. Therefore, the energy and exergy analysis is conducted for a marine low-speed engine based on the experimental data. Energy analysis shows the exhaust gas occupies the largest proportion of all fuel energy waste, and it rises with the increment of engine load. The heat transfer consumes the second largest proportion, while it is negatively correlated to engine load. The energy analysis indicates that the most effective way to improve the engine efficiency is to reduce the energy wasted by exhaust gas and heat transfer. However, the latter exergy analysis demonstrates that there are other effective approaches to improve the engine efficiency.
Technical Paper

Analysis of Thermal Efficiency Improvement of a Highly Boosted, High Compression Ratio, Direct-Injection Gasoline Engine with LIVC and EIVC at Partial and Full Loads

2015-09-01
2015-01-1882
The improvement mechanism of fuel consumption at partial and full loads of a boosted direction-injection gasoline engine with the elevated geometrical compression ratio and Miller cycle by either early or late intake valve closing (EIVC or LIVC) are analyzed based on the first law of thermodynamics and one dimensional engine simulation. An increase in geometric compression ratio increases the theoretical thermal efficiency for all the operating loads, but deteriorates the fuel economy at full loads, owing primarily to the full-load knock limit. Use of Miller cycle improves the fuel economy for both the partial and full load operations by reducing the pumping loss and optimizing the combustion phasing, respectively. A comparison between EIVC and LIVC on the influencing factors on the thermal efficiency at the partial load shows that EIVC leads to higher mechanical efficiency and less heat transfer loss than LIVC, and hence its efficiency improvement is superior over LIVC.
Journal Article

Computational Modeling of Diesel Spray Combustion with Multiple Injections

2020-04-14
2020-01-1155
Multiple injection strategies are commonly used in conventional Diesel engines due to the flexibility for optimizing heat-release timing with a consequent improvement in fuel economy and engine-out emissions. This is also desirable in low-temperature combustion (LTC) engines since it offers the potential to reduce unburned hydrocarbon and CO emissions. To better utilize these benefits and find optimal calibrations of split injection strategies, it is imperative that the fundamental processes of multiple injection combustion are understood and computational fluid dynamics models accurately describe the flow dynamics and combustion characteristics between different injection events. To this end, this work is dedicated to the identification of suitable methodologies to predict the multiple injection combustion process.
X