Refine Your Search

Topic

Author

Search Results

Journal Article

1-D Simulation Study of Divided Exhaust Period for a Highly Downsized Turbocharged SI Engine - Scavenge Valve Optimization

2014-04-01
2014-01-1656
Fuel efficiency and torque performance are two major challenges for highly downsized turbocharged engines. However, the inherent characteristics of the turbocharged SI engine such as negative PMEP, knock sensitivity and poor transient performance significantly limit its maximum potential. Conventional ways of improving the problems above normally concentrate solely on the engine side or turbocharger side leaving the exhaust manifold in between ignored. This paper investigates this neglected area by highlighting a novel means of gas exchange process. Divided Exhaust Period (DEP) is an alternative way of accomplishing the gas exchange process in turbocharged engines. The DEP concept engine features two exhaust valves but with separated function. The blow-down valve acts like a traditional turbocharged exhaust valve to evacuate the first portion of the exhaust gas to the turbine.
Journal Article

Ultra Boost for Economy: Extending the Limits of Extreme Engine Downsizing

2014-04-01
2014-01-1185
The paper discusses the concept, design and final results from the ‘Ultra Boost for Economy’ collaborative project, which was part-funded by the Technology Strategy Board, the UK's innovation agency. The project comprised industry- and academia-wide expertise to demonstrate that it is possible to reduce engine capacity by 60% and still achieve the torque curve of a modern, large-capacity naturally-aspirated engine, while encompassing the attributes necessary to employ such a concept in premium vehicles. In addition to achieving the torque curve of the Jaguar Land Rover naturally-aspirated 5.0 litre V8 engine (which included generating 25 bar BMEP at 1000 rpm), the main project target was to show that such a downsized engine could, in itself, provide a major proportion of a route towards a 35% reduction in vehicle tailpipe CO2 on the New European Drive Cycle, together with some vehicle-based modifications and the assumption of stop-start technology being used instead of hybridization.
Journal Article

Observations on the Measurement and Performance Impact of Catalyzed vs. Non Catalyzed EGR on a Heavily Downsized DISI Engine

2014-04-01
2014-01-1196
Increasingly stringent regulations and rising fuel costs require that automotive manufacturers reduce their fleet CO2 emissions. Gasoline engine downsizing is one such technology at the forefront of improvements in fuel economy. As engine downsizing becomes more aggressive, normal engine operating points are moving into higher load regions, typically requiring over-fuelling to maintain exhaust gas temperatures within component protection limits and retarded ignition timings in order to mitigate knock and pre-ignition events. These two mechanisms are counterproductive, since the retarded ignition timing delays combustion, in turn raising exhaust gas temperature. A key process being used to inhibit the occurrence of these knock and pre-ignition phenomena is cooled exhaust gas recirculation (EGR). Cooled EGR lowers temperatures during the combustion process, reducing the possibility of knock, and can thus reduce or eliminate the need for over-fuelling.
Technical Paper

Investigations into Steady-State and Stop-Start Emissions in a Wankel Rotary Engine with a Novel Rotor Cooling Arrangement

2021-09-05
2021-24-0097
The present work investigates a means of controlling engine hydrocarbon startup and shutdown emissions in a Wankel engine which uses a novel rotor cooling method. Mechanically the engine employs a self-pressurizing air-cooled rotor system (SPARCS) configured to provide improved cooling versus a simple air-cooled rotor arrangement. The novelty of the SPARCS system is that it uses the fact that blowby past the sealing grid is inevitable in a Wankel engine as a means of increasing the density of the medium used for cooling the rotor. Unfortunately, the design also means that when the engine is shutdown, due to the overpressure within the engine core and the fact that fuel vapour and lubricating oil are to be found within it, unburned hydrocarbons can leak into the combustion chambers, and thence to the atmosphere via either or both of the intake and exhaust ports.
Technical Paper

A Random Forest Algorithmic Approach to Predicting Particulate Emissions from a Highly Boosted GDI Engine

2021-09-05
2021-24-0076
Particulate emissions from gasoline direct injection (GDI) engines continue to be a topic of substantial research interest. Forthcoming regulation both in the USA and the EU will further reduce their emission and drive innovation. Substantial research effort is spent undertaking experiments to understand, characterize, and research particle number (PN) emissions from engines and vehicles. Recent advances in computing power, data storage, and understanding of artificial intelligence algorithms now mean that these are becoming an important tool in engine research. In this work a random forest (RF) algorithm is used for the prediction of PN emissions from a highly boosted (up to 32 bar BMEP) GDI engine. Particle size, concentration, and the accumulation mode geometric standard deviation (GSD) are all predicted by the model. The results are analysed and an in depth study on parameter importance is carried out.
Technical Paper

Numerical Simulations of the Effect of Cold Fuel Temperature on In-Nozzle Flow and Cavitation Using a Model Injector Geometry

2020-09-15
2020-01-2116
In the present study, Large Eddy Simulations (LES) have been performed with a 3D model of a step nozzle injector, using n-pentane as the injected fluid, a representative of the high-volatility components in gasoline. The influence of fuel temperature and injection pressure were investigated in conditions that shed light on engine cold-start, a phenomenon prevalent in a number of combustion applications, albeit not extensively studied. The test cases provide an impression of the in-nozzle phase change and the near-nozzle spray structure across different cavitation regimes. Results for the 20oC fuel temperature case (supercavitating regime) depict the formation of a continuous cavitation region that extends to the nozzle outlet. Collapse-induced pressure wave dynamics near the outlet cause a transient entrainment of air from the discharge chamber towards the nozzle.
Journal Article

SuperGen on Ultraboost: Variable-Speed Centrifugal Supercharging as an Enabling Technology for Extreme Engine Downsizing

2015-04-14
2015-01-1282
The paper discusses investigations into improving the full-load and transient performance of the Ultraboost extreme downsizing engine by the application of the SuperGen variable-speed centrifugal supercharger. Since its output stage speed is decoupled from that of the crankshaft, SuperGen is potentially especially attractive in a compound pressure-charging system. Such systems typically comprise a turbocharger, which is used as the main charging device, compounded at lower charge mass flow rates by a supercharger used as a second boosting stage. Because of its variable drive ratio, SuperGen can be blended in and out continuously to provide seamless driveability, as opposed to the alternative of a clutched, single-drive-ratio positive-displacement device. In this respect its operation is very similar to that of an electrically-driven compressor, although it is voltage agnostic and can supply other hybrid functionality, too.
Journal Article

Analysis of a Diesel Passenger Car Behavior On-Road and over Certification Duty Cycles

2016-10-17
2016-01-2328
Precise, repeatable and representative testing is a key tool for developing and demonstrating automotive fuel and lubricant products. This paper reports on the first findings of a project that aims to determine the requirements for highly repeatable test methods to measure very small differences in fuel economy and powertrain performance. This will be underpinned by identifying and quantifying the variations inherent to this specific test vehicle, both on-road and on Chassis Dynamometer (CD), that create a barrier to improved testing methods. In this initial work, a comparison was made between on-road driving, the New European Drive Cycle (NEDC) and World harmonized Light-duty Test Cycle (WLTC) cycles to understand the behavior of various vehicle systems along with the discrepancies that can arise owing to the particular conditions of the standard test cycles.
Technical Paper

Is the “K Value” of an Engine Truly Fuel Independent?

2020-04-14
2020-01-0615
The octane appetite of an engine is frequently characterised by the so-called K value. It is usually assumed that K is dependent only on the thermodynamic conditions in the engine when knock occurs. In this work we test this hypothesis: further analysis was conducted on experimental results from SAE 2019-01-0035 in which a matrix of fuels was tested in a single cylinder engine. The fuels consisted of a relatively small number of components, thereby simplifying the analysis of the chemical kinetic proprieties. Through dividing the original fuel matrix into subsets, it was possible to explore the variation of K value with fuel properties. It was found that K value tends to increase slightly with RON. The explanation for this finding is that higher RON leads to advanced ignition timing (i.e. closer to MBT conditions) and advanced ignition timing results in faster combustion because of the higher pressures and temperatures reached in the thermodynamic trajectory.
Technical Paper

Control-Oriented Modelling of a Wankel Rotary Engine: A Synthesis Approach of State Space and Neural Networks

2020-04-14
2020-01-0253
The use of Wankel rotary engines as a range extender has been recognised as an appealing method to enhance the performance of Hybrid Electric Vehicles (HEV). They are effective alternatives to conventional reciprocating piston engines due to their considerable merits such as lightness, compactness, and higher power-to-weight ratio. However, further improvements on Wankel engines in terms of fuel economy and emissions are still needed. The objective of this work is to investigate the engine modelling methodology that is particularly suitable for the theoretical studies on Wankel engine dynamics and new control development. In this paper, control-oriented models are developed for a 225CS Wankel rotary engine produced by Advanced Innovative Engineering (AIE) UK Ltd. Through a synthesis approach that involves State Space (SS) principles and the artificial Neural Networks (NN), the Wankel engine models are derived by leveraging both first-principle knowledge and engine test data.
Journal Article

Computer Simulation Studies of Adsorption of Binary and Ternary Mixtures of Gasoline Components in Engine Deposits

2014-10-13
2014-01-2719
Carbonaceous deposits can accumulate on various surfaces of the internal combustion engine and affect its performance. The porous nature of these deposits means that they act like a “sponge”, adsorbing fuel components and changing both the composition and the amount of fuel in the combustion chamber. Here we use a previously developed and validated model of engine deposits to predict adsorption of normal heptane, isooctane, toluene and their mixtures in deposits of different origin within a port fuel injected spark ignition engine (Combustion Chamber Deposits, or CCDs, and Intake Valve Deposits, or IVDs) and under different conditions. We explore the influence of molecular structure of adsorbing species, composition of the bulk mixture and temperature on the uptake and selectivity behaviour of the deposits. While deposits generally show high capacity toward all three components, we observe that selectivity behaviour is a more subtle and complex property.
Journal Article

Formation and Removal of Injector Nozzle Deposits in Modern Diesel Cars

2013-04-08
2013-01-1684
Deposits forming in the injector nozzle holes of modern diesel cars can reduce and disrupt the fuel injected into the combustion chamber, causing reduced or less efficient combustion, resulting in power loss and increased fuel consumption. A study of the factors affecting injector nozzle tip temperature, a parameter critical to nozzle deposit formation, has been conducted in a Peugeot DW10 passenger car bench engine, as used in the industry standard CEC F-098 injector nozzle deposit test, [1]. The findings of the bench engine study were applied in the development of a Chassis Dynamometer (CD) based vehicle test method using Euro 5 compliant vehicles. The developed test method was refined to tune the conditions as far as practicable towards a realistic driving pattern whilst maintaining sufficient deposit forming tendency to enable test duration to be limited to a reasonable period.
Journal Article

A Chemical and Morphological Study of Diesel Injector Nozzle Deposits - Insights into their Formation and Growth Mechanisms

2017-03-28
2017-01-0798
Modern diesel passenger car technology continues to develop rapidly in response to demanding emissions, performance, refinement, cost and fuel efficiency requirements. This has included the implementation of high pressure common rail fuel systems employing high precision injectors with complex injection strategies, higher hydraulic efficiency injector nozzles and in some cases <100µm nozzle hole diameters. With the trend towards lower diameter diesel injector nozzle holes and reduced cleaning through cavitation with higher hydraulic efficiency nozzles, it is increasingly important to focus on understanding the mechanism of diesel injector nozzle deposit formation and growth. In this study such deposits were analysed by cross-sectioning the diesel injector along the length of the nozzle hole enabling in-depth analysis of deposit morphology and composition change from the inlet to the outlet, using state-of-the-art electron microscopy techniques.
Journal Article

Octane Appetite: The Relevance of a Lower Limit to the MON Specification in a Downsized, Highly Boosted DISI Engine

2014-10-13
2014-01-2718
Market demand for high performance gasoline vehicles and increasingly strict government emissions regulations are driving the development of highly downsized, boosted direct injection engines. The in-cylinder temperatures and pressures of these emerging technologies tend to no longer adhere to the test conditions defining the RON and MON octane rating scales. This divergence between fuel knock rating methods and fuel performance in modern engines has previously led to the development of an engine and operating condition dependent scaling factor, K, which allows for extrapolation of RON and MON values. Downsized, boosted DISI engines have been generally shown to have negative K-values when knock limited, indicating a preference for fuels of higher sensitivity and challenging the relevance of a lower limit to the MON specification.
Journal Article

Application of a Split Lubrication Gasoline Engine to the Screening and Understanding of Friction Modifier Behaviour

2011-08-30
2011-01-2134
A series of viscous and surface friction modifier additives has been studied in a modified SI engine with separable valve train lubrication. From the results, it has been possible to classify the hydrodynamic or boundary lubrication nature of the observed effects for a series of lubricant additives. It is shown that the frictional benefit of a given additive depends not only on the engine operating condition but also on the engine components on which it is acting. For some additives a fuel economy benefit can switch to a disbenefit as operating regime changes and a different aspect of the additive properties becomes important. Such observations are rationalised in the context of conventional lubrication theory.
Technical Paper

Potential of a Controllable Engine Cooling System to Reduce NOx Emissions in Diesel Engines

2004-03-08
2004-01-0054
This paper investigates the potential for reduced NOx emissions from the integration of thermal factors into the Diesel engine calibration process. NOx emissions from Diesel engines have been shown to be sensitive to engine operating temperature, which is directly related to the level of cooling applied to the engine, in addition to the main engine operating parameters such as injection timing and EGR ratio. Experimental engine characterization of the main engine parameters against coolant temperature set point shows that engine cooling settings can extend the feasible lower limits of fuel consumption and emissions output from Diesel engine. With the adoption of an integrated calibration methodology including engine cooling set point, NOx emissions can be improved by up to 30% at crucial high speed/load operating points seen in the NEDC drive cycle with a minor reduction in fuel economy and small increase in CO output.
Technical Paper

Potential for Fuel Economy Improvements by Reducing Frictional Losses in a Pushing Metal V-Belt CVT

2004-03-08
2004-01-0481
This paper gives an overview of the development of a number of loss models for the pushing metal V-belt CVT. These were validated using a range of experimental data collected from two test rigs. There are several contributions to the torque losses and new models have been developed that are based upon relative motion between belt components and pulley deflections. Belt slip models will be proposed based upon published theory, expanded to take account of new findings from this work. The paper introduces a number of proposals to improve the efficiency of the transmission based on redesign of the belt geometry and other techniques to reduce frictional losses between components. These proposed efficiency improvements have been modelled and substituted into a complete vehicle simulation to show improvements in vehicle fuel economy over a standard European drive cycle.
Technical Paper

The M111 Engine CCD and Emissions Test: Is it Relevant to Real-World Vehicle Data?

2002-05-06
2002-01-1642
A European test procedure for evaluating engine deposits, using the Mercedes Benz M111 bench engine, has already been approved for inlet valve deposits (IVD) and is under development for combustion chamber deposits (CCD) by the Co-ordinating European Council (CEC). This paper describes CCD effects on emissions using a slightly modified version of this engine test procedure and compares it with CCD/emissions data from road vehicles. The engine used was a modern four valve, four cylinder, 2.0 litre passenger car unit and the bench test procedure used extended the operating time from the specified 60 hours to 180 hours. The road vehicle trial used two Mercedes Benz C200 passenger cars fitted with the M111 engine and two Ford Mondeo 2.0 litre passenger cars. Data was collected up to 11200km, approximately equivalent to 180 hours operation of the bench engine.
Technical Paper

Research on the Effect of Lubricant Oil and Fuel Properties on LSPI Occurrence in Boosted S. I. Engines

2016-10-17
2016-01-2292
The effects of lubricant oil and fuel properties on low speed pre-ignition (LSPI) occurrence in boosted S.I. engines were experimentally evaluated with multi-cylinder engine and de-correlated oil and fuel matrices. Further, the auto-ignitability of fuel spray droplets and evaporated homogeneous fuel/oil mixtures were evaluated in a combustion bomb and pressure differential scanning calorimetry (PDSC) tests to analyze the fundamental ignition process. The work investigated the effect of engine conditions, fuel volatility and various lubricant additives on LSPI occurrence. The results support the validity of aspects of the LSPI mechanism hypothesis based on the phenomenon of droplets of lubricant oil/fuel mixture (caused by adhesion of fuel spray on the liner wall) flying into the chamber and autoigniting before spark ignition.
Technical Paper

Development of a Low Cost Production Automotive Engine for Range Extender Application for Electric Vehicles

2016-04-05
2016-01-1055
Range Extended Electric Vehicles (REEVs) are gaining popularity due to their simplicity, reduced emissions and fuel consumption when compared to parallel or series/parallel hybrid vehicles. The range extender internal combustion engine (ICE) can be optimised to a number of steady state points which offers significant improvement in overall exhaust emissions. One of the key challenges in such vehicles is to reduce the overall powertrain costs, and OEMs providing REEVs such as the BMW i3 have included the range extender as an optional extra due to increasing costs on the overall vehicle price. This paper discusses the development of a low cost Auxiliary Power Unit (APU) of c.25 kW for a range extender application utilising a 624 cc two cylinder automotive gasoline engine. Changes to the base engine are limited to those required for range extender development purposes and include prototype control system, electronic throttle, redesigned manifolds and calibration on European grade fuel.
X