Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

First In-Situ Measurement of Lubricant Degradation in the Ring Pack of a Running Engine

1994-10-01
942026
Mid-infrared reflection-absorption spectroscopy, has been applied for the first time to the measurement of lubricant degradation products in the ring pack of a firing single-cylinder, IDI diesel. An IR-transmitting window, mounted in the cylinder wall, enables illumination of the moving piston by a broadband IR source located on the engine exterior. Light reflected from the piston is analysed in three wavebands to measure carbonyl oxidation products and oil volumes. Intra-cycle observations reveal differences in the apparent extent of lubricant oxidation between strokes and at different spatial locations in the ring pack. The data are interpreted in terms of a non-homogeneous sample.
Technical Paper

The Influence of Lubricant Rheology on Friction in the Piston Ring-Pack

1994-10-01
941981
A piston ring-pack lubrication model has been developed which takes into account both lubricant viscosity/temperature and viscosity/shear rate variations. In addition, lubricant starvation of the upper piston rings, due to restriction of the oil supply by the lower rings, has been included. Inputs to the model include piston ring profiles (measured using Talysurf profilometry) and gas pressure distributions throughout the ring-pack. The latter were calculated using the (known) combustion chamber pressure diagram at the relevant engine operating conditions. The model was validated by comparing predicted oil film thicknesses with those measured using a laser-induced fluorescence technique on a Caterpillar-1Y73 single-cylinder diesel engine. The engine was run at a range of speeds with two different, fully formulated, multigrade lubricants, and the oil film thickness under each of the piston rings was measured.
Technical Paper

Full Mid-IR Spectral Characterisation of Lubricant in the Ring Pack of a Running Diesel Engine by Time-Resolved FTIR Spectrometry

1996-10-01
962003
A unique time-resolved Fourier Transform InfraRed (FTIR) spectrometry technique has been developed to obtain full mid-IR lubricant spectra directly from the ring-pack region of a firing, single cylinder, diesel engine. Initial studies of the detailed spectra show a growth of oxidation products, as indicated by a strong carbonyl absorption peak, observed to increase with load close to the top ring location, for both power and exhaust strokes. Similarly, the formation of alcohol, ketone, aldehyde and carboxylate oxidation products is accessible. Thus it is possible to gauge gross changes to lubricant composition as a function of spatial location through the ring-pack, engine stroke and the severity of engine operation.
Technical Paper

Performance of Lubricating Oils in Vegetable Oil Ester-Fuelled Diesel Engines

1983-09-12
831355
A series of engine dynamometer tests was carried out with 100% ethyl ester of soya oil as fuel and six different diesel engine lubricants. In each case the lubricant became contaminated by unburnt fuel during the tests with measured dilution rates of up to 0.2% of the fuel throughput. The lubricant/fuel mixture eventually underwent degradation to such an extent that phase separation occurred. The tests were terminated when the lubricant lost all dispersancy, as evaluated by a blotter-spot teat. Used oil analysis revealed that rapid oxidation of some of the fatty acid ester components of the fuel diluent had occurred in the later stages of the tests. At the high levels of fuel dilution recorded in these tests there was little difference between the performances of the six lubricants, despite their differing performance categories.
Technical Paper

Lubricant Formulation Effects on Oil Seal Degradation

1995-10-01
952340
Principal formulation effects on oil-fluoroelastomer compatibility in European specification tests are reviewed, and detailed surface analysis of elastomer samples after exposure to oil reported. The mechanism of fluoroelastomer degradation has been investigated and found to be based on fluorine depletion of a thin surface layer by dispersant additives. Compatibility is determined by both the oil and the detailed composition of the elastomer. Correlations with field performance have not been published for current European elastomer tests. Failing oils have demonstrated satisfactory performance in field trials. Oil preageing affects seal compatibility, but probably differently for gasoline and diesel engine lubricants.
X