Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

Performance and Emissions of Diesel and Alternative Diesel Fuels in a Heavy-duty Industry-Standard Older Engine

2010-10-25
2010-01-2281
Conventional diesel fuel has been in the market for decades and used successfully to run diesel engines of all sizes in many applications. In order to reduce emissions and to foster energy source diversity, new fuels such as alternative and renewable, as well as new fuel formulations have entered the market. These include biodiesel, gas-to-liquid, and alternative formulations by states such as California. Performance variations in fuel economy, emissions, and compatibility for these fuels have been evaluated and debated. In some cases contradictory views have surfaced. “Sustainable”, “Renewable”, and “Clean” designations have been interchanged. Adding to the confusion, results from one fuel in one type of engine such as an older heavy-duty engine, is at times compared to that of another type such as a modern light-duty. This study was an attempt to compare the performance of several fuels in an identical environment, using the same engine, for direct comparison.
Journal Article

The Impact of Cooled EGR on Peak Cylinder Pressure in a Turbocharged, Spark Ignited Engine

2015-04-14
2015-01-0744
The use of cooled EGR as a knock suppression tool is gaining more acceptance worldwide. As cooled EGR become more prevalent, some challenges are presented for engine designers. In this study, the impact of cooled EGR on peak cylinder pressure was evaluated. A 1.6 L, 4-cylinder engine was operated with and without cooled EGR at several operating conditions. The impact of adding cooled EGR to the engine on peak cylinder pressure was then evaluated with an attempt to separate the effect due to advanced combustion phasing from the effect of increased manifold pressure. The results show that cooled EGR's impact on peak cylinder pressure is primarily due to the knock suppression effect, with the result that an EGR rate of 25% leads to an almost 50% increase in peak cylinder pressure at a mid-load condition if the combustion phasing is advanced to Knock Limited Spark Advance (KLSA). When combustion phasing was held constant, increasing the EGR rate had almost no effect on PCP.
Journal Article

Potential and Challenges for a Water-Gas-Shift Catalyst as a Combustion Promoter on a D-EGR® Engine

2015-04-14
2015-01-0784
In light of the increasingly stringent efficiency and emissions requirements, several new engine technologies are currently under investigation. One of these new concepts is the Dedicated EGR (D-EGR®) engine. The concept utilizes fuel reforming and high levels of recirculated exhaust gas (EGR) to achieve very high levels of thermal efficiency. While the positive impact of reformate, in particular hydrogen, on gasoline engine performance has been widely documented, the on-board reforming process and / or storage of H2 remains challenging. The Water-Gas-Shift (WGS) reaction is well known and has been used successfully for many years in the industry to produce hydrogen from the reactants water vapor and carbon monoxide. For this study, prototype WGS catalysts were installed in the exhaust tract of the dedicated cylinder of a turbocharged 2.0 L in-line four cylinder MPI engine. The potential of increased H2 production in a D-EGR engine was evaluated through the use of these catalysts.
Technical Paper

The Effect of Heavy-Duty Diesel Cylinder Deactivation on Exhaust Temperature, Fuel Consumption, and Turbocharger Performance up to 3 bar BMEP

2020-04-14
2020-01-1407
Diesel Cylinder Deactivation (CDA) has been shown in previous work to increase exhaust temperatures, improve fuel efficiency, and reduce engine-out NOx for engine loads up to 3 bar BMEP. The purpose of this study is to determine whether or not the turbocharger needs to be altered when implementing CDA on a diesel engine. This study investigates the effect of CDA on exhaust temperature, fuel efficiency, and turbocharger performance in a 15L heavy-duty diesel engine under low-load (0-3 bar BMEP) steady-state operating conditions. Two calibration strategies were evaluated. First, a “stay-hot” thermal management strategy in which CDA was used to increase exhaust temperature and reduce fuel consumption. Next, a “get-hot” strategy where CDA and elevated idle speed was used to increase exhaust temperature and exhaust enthalpy for rapid aftertreatment warm-up.
Journal Article

Dedicated EGR Vehicle Demonstration

2017-03-28
2017-01-0648
Dedicated EGR (D-EGR) is an EGR strategy that uses in-cylinder reformation to improve fuel economy and reduce emissions. The entire exhaust of a sub-group of power cylinders (dedicated cylinders) is routed directly into the intake. These cylinders are run fuel-rich, producing H2 and CO (reformate), with the potential to improve combustion stability, knock tolerance and burn duration. A 2.0 L turbocharged D-EGR engine was packaged into a 2012 Buick Regal and evaluated on drive cycle performance. City and highway fuel consumption were reduced by 13% and 9%, respectively. NOx + NMOG were 31 mg/mile, well below the Tier 2 Bin 5 limit and just outside the Tier 3 Bin 30 limit (30 mg/mile).
Journal Article

Design and Implementation of a D-EGR® Mixer for Improved Dilution and Reformate Distribution

2017-03-28
2017-01-0647
The Dedicated EGR (D-EGR®) engine has shown improved efficiency and emissions while minimizing the challenges of traditional cooled EGR. The concept combines the benefits of cooled EGR with additional improvements resulting from in-cylinder fuel reformation. The fuel reformation takes place in the dedicated cylinder, which is also responsible for producing the diluents for the engine (EGR). The D-EGR system does present its own set of challenges. Because only one out of four cylinders is providing all of the dilution and reformate for the engine, there are three “missing” EGR pulses and problems with EGR distribution to all 4 cylinders exist. In testing, distribution problems were realized which led to poor engine operation. To address these spatial and temporal mixing challenges, a distribution mixer was developed and tested which improved cylinder-to-cylinder and cycle-to-cycle variation of EGR rate through improved EGR distribution.
Journal Article

The Interaction between Fuel Anti-Knock Index and Reformation Ratio in an Engine Equipped with Dedicated EGR

2016-04-05
2016-01-0712
Experiments were performed on a small displacement (< 2 L), high compression ratio, 4 cylinder, port injected gasoline engine equipped with Dedicated EGR® (D-EGR®) technology using fuels with varying anti-knock properties. Gasolines with anti-knock indices of 84, 89 and 93 anti-knock index (AKI) were tested. The engine was operated at a constant nominal EGR rate of ∼25% while varying the reformation ratio in the dedicated cylinder from a ϕD-EGR = 1.0 - 1.4. Testing was conducted at selected engine speeds and constant torque while operating at knock limited spark advance on the three fuels. The change in combustion phasing as a function of the level of overfuelling in the dedicated cylinder was documented for all three fuels to determine the tradeoff between the reformation ratio required to achieve a certain knock resistance and the fuel octane rating.
Journal Article

Understanding the Octane Appetite of Modern Vehicles

2016-04-05
2016-01-0834
Octane appetite of modern engines has changed as engine designs have evolved to meet performance, emissions, fuel economy and other demands. The octane appetite of seven modern vehicles was studied in accordance with the octane index equation OI=RON-KS, where K is an operating condition specific constant and S is the fuel sensitivity (RONMON). Engines with a displacement of 2.0L and below and different combinations of boosting, fuel injection, and compression ratios were tested using a decorrelated RONMON matrix of eight fuels. Power and acceleration performance were used to determine the K values for corresponding operating points. Previous studies have shown that vehicles manufactured up to 20 years ago mostly exhibited negative K values and the fuels with higher RON and higher sensitivity tended to perform better.
Technical Paper

Improving Heavy Duty Natural Gas Engine Efficiency: A Systematic Approach to Application of Dedicated EGR

2020-04-14
2020-01-0818
The worldwide trend of tightening CO2 emissions standards and desire for near zero emissions is driving development of high efficiency natural gas engines for a low CO2 replacement of traditional diesel engines. A Cummins Westport ISX12 G was previously converted to a Dedicated EGR® (D-EGR®) configuration with two out of the six cylinders acting as the EGR producing cylinders. Using a systems approach, the combustion and turbocharging systems were optimized for improved efficiency while maintaining the potential for achieving 0.02 g/bhp-hr NOX standards. A prototype variable nozzle turbocharger was selected to maintain the stock torque curve. The EGR delivery method enabled a reduction in pre-turbine pressure as the turbine was not required to be undersized to drive EGR. A high energy Dual Coil Offset (DCO®) ignition system was utilized to maintain stable combustion with increased EGR rates.
Technical Paper

Development of a Burner-Based Test System to Produce Controllable Particulate Emissions for Evaluation of Gasoline Particulate Filters

2020-04-14
2020-01-0389
Gasoline Direct Injection (GDI) engines have been widely adopted by manufacturers in the light-duty market due to their fuel economy benefits. However, several studies have shown that GDI engines generate higher levels of particulate matter (PM) emissions relative to port fuel injected (PFI) engines and diesel engines equipped with optimally functioning diesel particulate filters (DPF). With stringent particle number (PN) regulations being implemented in both, the European Union and China, gasoline particulate filters (GPF) are expected to be widely utilized to control particulate emissions. Currently, evaluating GPF technologies on a vehicle can be challenging due to a limited number of commercially available vehicles that are calibrated for a GPF in the United States as well as the costs associated with vehicle procurement and evaluations utilizing a chassis dynamometer facility.
Journal Article

Investigation of In-cylinder NOx and PM Reduction with Delphi E3 Flexible Unit Injectors on a Heavy-duty Diesel Engine

2008-06-23
2008-01-1792
In-cylinder emission controls were the focus for diesel engines for many decades before the emergence of diesel aftertreatment. Even with modern aftertreatment, control of in-cylinder processes remains a key issue for developing diesel vehicles with low tailpipe emissions. A reduction in in-cylinder emissions makes aftertreatment more effective at lower cost with superior fuel economy. This paper describes a study focused on an in-cylinder combustion control approach using a Delphi E3 flexible fuel system to achieve low engine-out NOx and PM emissions. A 2003 model year Detroit Diesel Corporation Series 60 14L heady-duty diesel engine, modified to accept the Delphi E3 unit injectors, and ultra low sulfur fuel were used throughout this study. The process of achieving premixed low temperature combustion within the limited range of parameters of the stock ECU was investigated.
Journal Article

Development of a Structurally Optimized Heavy Duty Diesel Cylinder Head Design Capable of 250 Bar Peak Cylinder Pressure Operation

2011-09-13
2011-01-2232
Historically, heavy-duty diesel (HDD) engine designs have evolved along the path of increased power output, improved fuel efficiency and reduced exhaust gas emissions, driven both by regulatory and market requirements. The various technologies employed to achieve this evolution have resulted in ever-increasing engine operating cylinder pressures, higher than for any other class of internal combustion engine. Traditional HDD engine design architecture limits peak cylinder pressure (PCP) to about 200 bar (2900 psi). HDD PCP had steadily increased from the early 1970's until the mid 2000's, at which point the structural limit was reached using traditional methods and materials. Specific power output reversed its historical trend and fell at this time as a result of technologies employed to satisfy new emissions requirements, most notably exhaust gas recirculation (EGR).
Journal Article

The Effects of Piston Crevices and Injection Strategy on Low-Speed Pre-Ignition in Boosted SI Engines

2012-04-16
2012-01-1148
The spark ignition (SI) engine has been known to exhibit several different abnormal combustion phenomena, such as knock or pre-ignition, which have been addressed with improved engine design or control schemes. However, in highly boosted SI engines, Low-Speed Pre-Ignition (LSPI), a pre-ignition event typically followed by heavy knock, has developed into a topic of major interest due to its potential for engine damage. Previous experiments associated increases in hydrocarbon emissions with the blowdown event of an LSPI cycle [1]. Also, the same experiments showed that there was a dependency of the LSPI activity on fuel and/or lubricant compositions [1]. Based on these findings it was hypothesized that accumulated hydrocarbons play a role in LSPI and are consumed during LSPI events. A potential source for accumulated HC is the top land piston crevice.
Journal Article

A High Efficiency, Dilute Gasoline Engine for the Heavy-Duty Market

2012-09-24
2012-01-1979
A 13 L HD diesel engine was converted to run as a flame propagation engine using the HEDGE™ Dual-Fuel concept. This concept consists of pre-mixed gasoline ignited by a small amount of diesel fuel - i.e., a diesel micropilot. Due to the large bore size and relatively high compression ratio for a pre-mixed combustion engine, high levels of cooled EGR were used to suppress knock and reduce the engine-out emissions of the oxides of nitrogen and particulates. Previous work had indicated that the boosting of high dilution engines challenges most modern turbocharging systems, so phase I of the project consisted of extensive simulation efforts to identify an EGR configuration that would allow for high levels of EGR flow along the lug curve while minimizing pumping losses and combustion instabilities from excessive backpressure. A potential solution that provided adequate BTE potential was consisted of dual loop EGR systems to simultaneously flow high pressure and low pressure loop EGR.
Journal Article

Effects of Variable Speed Supercharging Using a Continuously Variable Planetary on Fuel Economy and Low Speed Torque

2012-09-10
2012-01-1737
This paper describes advances in variable speed supercharging, including benefits for both fuel economy and low speed torque improvement. This work is an extension of the work described in SAE Paper 2012-01-0704 [8]. Using test stand data and state-of-the-art vehicle simulation software, a NuVinci continuously variable planetary (CVP) transmission driving an Eaton R410 supercharger on a 2.2 liter diesel was compared to the same base engine/vehicle with a turbocharger to calculate vehicle fuel economy. The diesel engine was tuned for Tier 2 Bin 5 emissions. Results are presented using several standard drive cycles. A Ford Mustang equipped with a 4.6 liter SI engine and prototype variable speed supercharger has also been constructed and tested, showing low speed torque increases of up to 30%. Dynamometer test results from this effort are presented. The combined results illustrate the promise of variable speed supercharging as a viable option for the next generation of engines.
Technical Paper

Evaluation of Possible Methanol Fuel Additives for Reducing Engine Wear and/or Corrosion

1990-10-01
902153
The use of fuel additives is one possible approach to reduce wear and corrosion in methanol fueled automobile engines. One hundred and six compounds added to M100 fuel in modest concentrations (1%) were tested in a Ball on Cylinder Machine (BOCM) for their ability to improve lubricity. The most promising candidates were then tested in an engine using a modified ASTM Sequence V-D wear screening test. Additive performance was measured by comparing the buildup of wear metals in the oil to that obtained from an engine fueled with neat M100. The BOCM method of evaluating the additive candidates proved inadequate in predicting abrasive engine wear under the test conditions utilized for this research program.
Technical Paper

Heat Transfer Enhancement through Advanced Casting Technologies

2020-04-14
2020-01-1162
There is growing interest in additive manufacturing technologies for prototype if not serial production of complex internal combustion engine components such as cylinder heads and pistons. In support of this general interest the authors undertook an experimental bench test to evaluate opportunities for cooling jacket improvement through geometries made achievable with additive manufacturing. A bench test rig was constructed using electrical heating elements and careful measurement to quantify the impact of various designs in terms of heat flux rate and convective heat transfer coefficients. Five designs were compared to a baseline - a castable rectangular passage. With each design the heat transfer coefficients and heat flux rates were measured at varying heat inputs, flow rates and pressure drops. Four of the five alternative geometries outperformed the baseline case by significant margins.
Journal Article

Scuderi Split Cycle Fast Acting Valvetrain: Architecture and Development

2011-04-12
2011-01-0404
The Scuderi internal combustion engine is characterized by a split cycle that divides the four strokes of a conventional combustion cycle over two paired cylinders, one intake/compression cylinder and one power/exhaust cylinder, connected by a crossover port. This split cycle also has an additional high pressure “crossover” gas transfer phase versus the conventional 4-stroke cycle, during which the charge air is moved from the first to the second cylinder. The intake/compression, power/exhaust and crossover events are repeated every revolution, i.e. over two cycles, with a small phase angle between the two cylinders. The separate cylinders enable opportunities for improved combustion and the possibility for pneumatic hybridization of the engine. This paper describes the technical challenges posed by the actuation of the crossover valves in the Scuderi Split Cycle research engine.
Journal Article

Scuderi Split Cycle Research Engine: Overview, Architecture and Operation

2011-04-12
2011-01-0403
The Scuderi engine is a split cycle design that divides the four strokes of a conventional combustion cycle over two paired cylinders, one intake/compression cylinder and one power/exhaust cylinder, connected by a crossover port. This configuration provides potential benefits to the combustion process, as well as presenting some challenges. It also creates the possibility for pneumatic hybridization of the engine. This paper reviews the first Scuderi split cycle research engine, giving an overview of its architecture and operation. It describes how the splitting of gas compression and combustion into two separate cylinders has been simulated and how the results were used to drive the engine architecture together with the design of the main engine systems for air handling, fuel injection, mixing and ignition. A prototype engine was designed, manufactured, and installed in a test cell. The engine was heavily instrumented and initial performance results are presented.
Journal Article

Optimizing Engine Oils for Fuel Economy with Advanced Test Methods

2017-10-08
2017-01-2348
Increasingly stringent fuel economy and emissions regulations around the world have forced the further optimization of nearly all vehicle systems. Many technologies exist to improve fuel economy; however, only a smaller sub-set are commercially feasible due to the cost of implementation. One system that can provide a small but significant improvement in fuel economy is the lubrication system of an internal combustion engine. Benefits in fuel economy may be realized by the reduction of engine oil viscosity and the addition of friction modifying additives. In both cases, advanced engine oils allow for a reduction of engine friction. Because of differences in engine design and architecture, some engines respond more to changes in oil viscosity or friction modification than others. For example, an engine that is designed for an SAE 0W-16 oil may experience an increase in fuel economy if an SAE 0W-8 is used.
X