Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

Feasibility of Using Full Synthetic Low Viscosity Engine Oil at High Ambient Temperatures in Military Vehicles

2010-10-25
2010-01-2176
The US Army is currently assessing the feasibility and defining the requirements of a Single Common Powertrain Lubricant (SCPL). This new lubricant would consist of an all-season (arctic to desert), fuel-efficient, multifunctional powertrain fluid with extended drain capabilities. As a developmental starting point, diesel engine testing has been conducted using the current MIL-PRF-46167D arctic engine oil at high temperature conditions representative of desert operation. Testing has been completed using three high density military engines: the General Engine Products 6.5L(T) engine, the Caterpillar C7, and the Detroit Diesel Series 60. Tests were conducted following two standard military testing cycles; the 210 hr Tactical Wheeled Vehicle Cycle, and the 400 hr NATO Hardware Endurance Cycle. Modifications were made to both testing procedures to more closely replicate the operation of the engine in desert-like conditions.
Journal Article

Engine Operating Condition and Gasoline Fuel Composition Effects on Low-Speed Pre-Ignition in High-Performance Spark Ignited Gasoline Engines

2011-04-12
2011-01-0342
Downsizing is an important concept to reduce fuel consumption as well as emissions of spark ignition engines. Engine displacement is reduced in order to shift operating points from lower part load into regions of the operating map with higher efficiency and thus lower specific fuel consumption [ 1 ]. Since maximum power in full load operation decreases due to the reduction of displacement, engines are boosted (turbocharging or supercharging), which leads to a higher specific loading of the engines. Hence, a new combustion phenomenon has been observed at high loads and low engine speed and is referred to as Low-Speed Pre-Ignition or LSPI. In cycles with LSPI, the air/fuel mixture is ignited prior to the spark which results in the initial flame propagation quickly transforming into heavy engine knock. Very high pressure rise rates and peak cylinder pressures could exceed design pressure limits, which in turn could lead to degradation of the engine.
Journal Article

The Effects of Piston Crevices and Injection Strategy on Low-Speed Pre-Ignition in Boosted SI Engines

2012-04-16
2012-01-1148
The spark ignition (SI) engine has been known to exhibit several different abnormal combustion phenomena, such as knock or pre-ignition, which have been addressed with improved engine design or control schemes. However, in highly boosted SI engines, Low-Speed Pre-Ignition (LSPI), a pre-ignition event typically followed by heavy knock, has developed into a topic of major interest due to its potential for engine damage. Previous experiments associated increases in hydrocarbon emissions with the blowdown event of an LSPI cycle [1]. Also, the same experiments showed that there was a dependency of the LSPI activity on fuel and/or lubricant compositions [1]. Based on these findings it was hypothesized that accumulated hydrocarbons play a role in LSPI and are consumed during LSPI events. A potential source for accumulated HC is the top land piston crevice.
Journal Article

Effects of Variable Speed Supercharging Using a Continuously Variable Planetary on Fuel Economy and Low Speed Torque

2012-09-10
2012-01-1737
This paper describes advances in variable speed supercharging, including benefits for both fuel economy and low speed torque improvement. This work is an extension of the work described in SAE Paper 2012-01-0704 [8]. Using test stand data and state-of-the-art vehicle simulation software, a NuVinci continuously variable planetary (CVP) transmission driving an Eaton R410 supercharger on a 2.2 liter diesel was compared to the same base engine/vehicle with a turbocharger to calculate vehicle fuel economy. The diesel engine was tuned for Tier 2 Bin 5 emissions. Results are presented using several standard drive cycles. A Ford Mustang equipped with a 4.6 liter SI engine and prototype variable speed supercharger has also been constructed and tested, showing low speed torque increases of up to 30%. Dynamometer test results from this effort are presented. The combined results illustrate the promise of variable speed supercharging as a viable option for the next generation of engines.
Technical Paper

Preparation and Testing of an Electric Competition Vehicle

1991-08-01
911684
A Dodge Omni electric car was prepared for competition in an electric “stock car” 2-hour endurance event: the inaugural Solar and Electric 500 Race, April 7, 1991. This entry utilized a series-wound, direct-current 21-hp electric motor controlled by an SCR frequency and pulse width modulator. Two types of lead-acid batteries were evaluated and the final configuration was a set of 16 (6-volt each) deep-cycle units. Preparation involved weight and friction reduction; suspension modification; load, charge and temperature instrumentaltion; and electrical interlock and collision safety systems. Vehicle testing totalled 15 hours of operation. Ranges observed in testing with the final configuration were from 30 to 52 miles for loads of 175 to 90 amperes. These were nearly constant, continuous discharge cycles. The track qualifying speed (64mph) was near the 68 mph record set by the DEMI Honda at the event on the one-mile track.
Journal Article

Lubricant Reactivity Effects on Gasoline Spark Ignition Engine Knock

2012-04-16
2012-01-1140
The performance and efficiency of spark ignited gasoline engines is often limited by end-gas knock. In particular, when operating the engine at high loads, combustion phasing is retarded to prevent knock, resulting in a significant reduction of engine efficiency. Since the invention of the spark ignition (SI) engine, much work has been devoted to improve and regulate fuel characteristics, such as octane number, to suppress engine knock. The auto-ignition tendency of the engine lubricant however, as described by cetane number (CN), has received little attention, as it has been assumed that engine lubricant effects on knock are insignificant, primarily due to low levels of average oil consumption. However, with modern SI engines being developed to operate at higher loads and closer to knock limits, the reactivity of engine lubricants can impact the knock behavior.
Journal Article

Engine Oil Fuel Economy Testing - A Tale of Two Tests

2017-03-28
2017-01-0882
Fuel economy is not an absolute attribute, but is highly dependent on the method used to evaluate it. In this work, two test methods are used to evaluate the differences in fuel economy brought about by changes in engine oil viscosity grade and additive chemistry. The two test methods include a chassis dynamometer vehicle test and an engine dynamometer test. The vehicle testing was conducted using the Federal Test Procedure (FTP) testing protocol while the engine dynamometer test uses the proposed American Society for Testing and Materials (ASTM) Sequence VIE fuel economy improvement 1 (FEI1) testing methodology. In an effort to improve agreement between the two testing methods, the same model engine was used in both test methods, the General Motors (GM) 3.6 L V6 (used in the 2012 model year Chevrolet™ Malibu™ engine). Within the lubricant industry, this choice of engine is reinforced because it has been selected for use in the proposed Sequence VIE fuel economy test.
Journal Article

Fuel Economy Durability - A Concept to be Considered for Motorcycle Oils

2011-11-08
2011-32-0545
Motorcycle manufacturers have recognized that highly friction modified passenger car oils can be deleterious to clutch performance, leading to clutch slippage. To address this issue, a JASO specification for four-stroke motorcycle oils was developed in 1999, categorizing oils into high friction oils termed JASO MA and low friction oils termed JASO MB. The high friction oils were preferred for most motorcycles where the engine oil also lubricates the clutch and gears. New motorcycle transmission technologies have increased the number of dry clutch applications which has led to an increased demand for JASO MB oils to improve fuel efficiency. While JASO MB oils contain friction modifiers to improve initial fuel economy, the motorcycle specifications have not addressed the fuel economy durability of motorcycle oils.
Journal Article

Understanding MTF Additive Effects on Synchroniser Friction

2011-08-30
2011-01-2121
Specific frictional properties are essential to provide correct and pleasurable shifting in a manual transmission. Synchroniser rings are being manufactured from an increasingly wider range of materials, and so it is important to understand synchroniser-additive interactions in order to develop tailored lubricants that provide the desired frictional performance. This paper describes a study of the interaction of various friction modifier additives with a range of synchroniser materials in order to better understand the potential to develop lubricants that provide optimal frictional performance across a wide range of manual transmission-synchroniser systems. This presentation will outline the results of testing fluids with a range of synchroniser materials and will be followed by a future paper that will describe details of the fluids and analysis of their interactions with the different synchroniser surfaces.
Technical Paper

Understanding Soot Mediated Oil Thickening Through Designed Experimentation - Part 5: Knowledge Exhancement in the GM 6.5L

1997-10-01
972952
Our basic understanding of the chemical and physical nature of soot, its interaction with lubricant components and its role in promoting wear and oil thickening in heavy duty diesel engines continues to grow. Our current study in the GM 6.5L engine focuses on examining the effects of variations in base stock type (Group I vs. Group II), viscosity index improver or viscosity modifier (VM) chemistry (OCP vs. dispersant OCP), zinc dithiophosphate (ZDP) type and dispersant type (low MW vs. high MW) on roller follower wear, viscosity growth and other measured responses. In this study, more robust fluids were tested producing very low wear results and minimal viscosity increase of the lubricant. Fluids containing dispersant OCP (DOCP) and high MW dispersant produced a lower degree of wear, whereas varying the ZDP type (1° vs. 2°) showed no effect on wear. The use of Group II base stocks was associated with significantly lower viscosity increases.
Technical Paper

Methanol-Capable Vehicle Development: Meeting the Challenge in the Crankcase

1990-10-01
902152
A major drive to develop methanol-fueled vehicles began with the 1973 oil embargo. Early work with dedicated methanol-fueled vehicles demonstrated that lubricant choice influenced engine durability. The qualities desired were not defined by the gasoline engine oil classification system in place at the time. As a result oils were developed which optimized those properties deemed desirable for methanol fuel. The advent of fuel sensors made it possible to design a vehicle which can operate on gasoline or gasoline with varying levels of methanol without intervention by the operator. This created a need for a lubricant that can handle a diversity of methanol/gasoline mixtures as well as conventional gasoline. The paper reviews some of the lubricants that have been used in prototype methanol-capable vehicles and the improvement of these formulations to meet the latest gasoline engine performance criteria while maintaining satisfactory methanol performance.
Technical Paper

Development and Testing of Optimized Engine Oils for Modern Two-Stroke Cycle Direct Fuel Injected Outboard Engines

2006-11-13
2006-32-0018
Despite the recent increase in fuel prices, the multi-billion dollar recreational boating market in North America continues to experience solid momentum and growth. In the U.S. economy alone, sales of recreational boats continue to increase with over 17 million boats sold in 2004 [1]. Of that share, outboard boats and the engines that power them, accounted for nearly half of all boat sales. Though there has been a shift in outboard technology to four-stroke cycle engines, a significant number of new engine sales represent two-stroke cycle engines employing direct fuel injection as a means to meet emissions regulations. With the life span of modern outboards estimated to be 8 to 10 years, a significant base of two-stroke cycle engines exist in the market place, and will continue to do so for the foreseeable future.
Technical Paper

Sampling System for Solid and Volatile Exhaust Particle Size, Number, and Mass Emissions

2007-04-16
2007-01-0307
A solid particle sampling system (SPSS) that is equipped with a heated oxidation catalyst, micro-dilution tunnels, filter holders and sampling probes, was designed and developed to collect filter-based solid and total (solid plus volatile) particles from the exhaust of internal combustion engines, and to facilitate the measurement of solid and total particles when equipped with particle measuring instruments for size, number, mass, and other particle characteristics. The SPSS was characterized with laboratory aerosol and showed a very low solid particle loss of less than 5 percent using sodium chloride particles, very high volatile particle removal of better than 98 percent using oil droplets, and no formation of sulfuric acid particles when using ammonium sulfate particles. The SPSS is a useful tool for researchers interested in characterizing the solid and volatile fraction of particles emitted from combustion sources.
Technical Paper

Fundamental Studies on ATF Friction, Part II

1998-10-19
982670
Interactions between automatic transmission fluid (ATF) components and composite friction materials and their effect on friction system performance continues to be an active area of interest to the automotive industry. A more fundamental understanding is needed of how base fluids, ATF additives, friction materials, and transmission design interact to produce the observed transmission system performance and durability. We herein report results from investigations carried out using a relatively thermo-oxidatively stable polyalphaolefin (PAO) base fluid treated with components representative of several additive types we previously reported to have significant negative effects on frictional performance. Secondly, we investigated a conventionally refined 150 N base oil treated with a calcium sulfonate detergent previously shown to improve friction performance.
Technical Paper

Analysis of a SuperTurbocharged Downsized Engine Using 1-D CFD Simulation

2010-04-12
2010-01-1231
The VanDyne SuperTurbocharger (SuperTurbo) is a turbocharger with an integral Continuously Variable Transmission (CVT). By changing the gear ratio of the CVT, the SuperTurbo is able to either pull power from the crankshaft to provide a supercharging function, or to function as a turbo-compounder, where energy is taken from the turbine and given to the crankshaft. The SuperTurbo's supercharger function enhances the transient response of a downsized and turbocharged engine, and the turbo-compounding function offers the opportunity to extract the available exhaust energy from the turbine rather than opening a waste gate. Using 1-D simulation, it was shown that a 2.0-liter L4 could exceed the torque curve of a 3.2L V6 using a SuperTurbo, and meet the torque curve of a 4.2-liter V8 with a SuperTurbo and a fresh-air bypass configuration. In each case, the part-load efficiency while using the SuperTurbo was better than the baseline engine.
Technical Paper

Control System Development for Retrofit Automated Manual Transmissions

2009-12-13
2009-28-0001
For transmission suppliers tooled primarily for producing manual transmissions, retrofitting a manual transmission with actuators and a controller is business viable. It offers a low cost convenience for the consumer without losing fuel economy when compared to torque converter type automatics. For heavy duty truck fleets even the estimated 3% gain in fuel economy that the Automated Manual Transmission (AMT) offers over the manual transmission can result in lower operational costs. This paper provides a case study using a light duty transmission retrofitted with electric actuation for gears and the clutch. A high level description of the control algorithms and hardware is included. Clutch control is the most significant component of the AMT controller and it is addressed in detail during operations such as vehicle launch from rest, launch from coast and launch on grades.
Technical Paper

Fuel Efficiency Effects of Lubricants in Military Vehicles

2010-10-25
2010-01-2180
The US Army is currently seeking to reduce fuel consumption by utilizing fuel efficient lubricants in its ground vehicle fleet. An additional desire is for a lubricant which would consist of an all-season (arctic to desert), fuel efficient, multifunctional Single Common Powertrain Lubricant (SCPL) with extended drain capabilities. To quantify the fuel efficiency impact of a SCPL type fluid in the engine and transmission, current MIL-PRF-46167D arctic engine oil was used in place of MIL-PRF-2104G 15W-40 oil and SAE J1321 Fuel Consumption In-Service testing was conducted. Additionally, synthetic SAE 75W-140 gear oil was evaluated in the axles of the vehicles in place of an SAE J2360 80W-90 oil. The test vehicles used for the study were three M1083A1 5-Ton Cargo vehicles from the Family of Medium Tactical Vehicles (FMTV).
Technical Paper

Detergent and Friction Modifier Effects on Metal/Metal and Clutch Material/Metal Frictional Performance

2001-05-07
2001-01-1993
The goal of this work was to find combinations of detergent and friction modifier additives that would produce high metal/metal friction with good clutch material performance. A baseline formulation was used with various combinations of five different detergents with five different friction modifiers. Two bench tests were used to assess performance. A CVT (Continuously Variable Transmission) Element-on-Ring Test was used to study metal/metal performance, and a VSFT (Variable Speed Friction Tester) procedure with cellulose based friction material was used to evaluate the μ-v (friction coefficient-velocity) clutch performance. Interestingly, a 400 TBN magnesium sulfonate detergent combined with a phosphorus containing friction modifier showed a special synergy.
Technical Paper

Predicting Sequence VI, VIA, and VIB Engine Tests Using Laboratory Methods

2001-05-07
2001-01-1904
Engine tests are widely used to measure the ability of lubricating oils to reduce fuel consumption through improved mechanical efficiency. Previous publications have correlated laboratory-scale tests with the well-established Sequence VI and VIA engine methods. The present paper uses a matrix of 66 oils to produce an empirical model for the recently developed Sequence VIB engine test. A smaller matrix of oils was available for correlation with Sequence VI and VIA results. The models combine a purposely-designed friction test with conventional measures of kinematic and high-temperature high-shear viscosity. Good correlation was obtained with the Sequence VI, VIA and VIB results, as well as each of the five stages in the Sequence VIB test. The effects of lubricant oxidation in the 96-hour FEI-2 portion of the Sequence VIB test were similar for each of the oils. As a result, good correlation was observed between FEI-1 and FEI-2 results from the VIB test.
Technical Paper

Impact of Lubricant Oil on Regulated Emissions of a Light-Duty Mercedes-Benz OM611 CIDI-Engine

2001-05-07
2001-01-1901
The Partnership for a New Generation Vehicle (PNGV) has identified the compression-ignition, direct-injection (CIDI) engine as a promising technology in meeting the PNGV goal of 80 miles per gallon for a prototype mid-size sedan by 2004. Challenges remain in reducing the emission levels of the CIDI-engine to meet future emission standards. The objective of this project was to perform an initial screening of crank case lubricant contribution to regulated engine-out emissions, particularly when low particulate forming diesel fuel formulations are used. The test engine was the Mercedes-Benz OM611, the test oils were a mineral SAE 5W30, a synthetic (PAO based) SAE 5W30, and a synthetic (PAO based) SAE 15W50, and the test fuels were a California-like certification fuel and an alternative oxygenated diesel fuel.
X