Refine Your Search

Topic

Author

Search Results

Journal Article

Location-Aware Adaptive Vehicle Dynamics System: Brake Modulation

2014-04-01
2014-01-0079
A Location-Aware Adaptive Vehicle Dynamics System (LAAVDS) is developed to assist the driver in maintaining vehicle handling capabilities through various driving maneuvers. An integral part of this System is an Intervention Strategy that uses a novel measure of handling capability, the Performance Margin, to assess the need to intervene. Through this strategy, the driver's commands are modulated to affect desired changes to the Performance Margin in a manner that is minimally intrusive to the driver's control authority. Real-time implementation requires the development of computationally efficient predictive vehicle models. This work develops one means to alter the future vehicle states: modulating the driver's brake commands. This control strategy must be considered in relationship to changes in the throttle commands. Three key elements of this strategy are developed in this work.
Journal Article

Location-Aware Adaptive Vehicle Dynamics System: Throttle Modulation

2014-04-01
2014-01-0105
A Location-Aware Adaptive Vehicle Dynamics System (LAAVDS) is developed to assist the driver in maintaining vehicle handling capabilities through various driving maneuvers. An Intervention Strategy uses a novel measure of handling capability, the Performance Margin, to assess the need to intervene. The driver's commands are modulated to affect desired changes to the Performance Margin in a manner that is minimally intrusive to the driver's control authority. Real-time implementation requires the development of computationally efficient predictive vehicle models which is the focus of this work. This work develops one means to alter the future vehicle states: modulating the driver's throttle commands. First, changes to the longitudinal force are translated to changes in engine torque based on the current operating state (torque and speed) of the engine.
Journal Article

Car-in-the-Loop Complete Vehicle Test Rig

2015-04-14
2015-01-0647
During the last years mechatronic systems developed into one of the biggest drivers of innovation in the automotive industry. The start of production of systems like dual clutch transmission, lane departure warning systems and active suspensions proves this statement. These systems have an influence on the longitudinal, steering and vertical dynamics of the vehicle. That is why the interaction on vehicle level is crucial for an optimal result in the fields of efficiency, comfort, safety and dynamics. To optimize the interaction of mechatronic systems, in this paper a new test rig concept for a complete vehicle is presented. The so-called Car-in-the-Loop-concept is capable of realistically reproducing the loads, which act on the powertrain, the steering and the suspension during a test drive.
Journal Article

The Influence of Cylinder Head Geometry Variations on the Volumetric Intake Flow Captured by Magnetic Resonance Velocimetry

2015-04-14
2015-01-1697
Magnetic Resonance Velocimetry (MRV) measurements are performed in 1:1 scale models of a single-cylinder optical engine to investigate the differences in the inlet flow due to geometrical changes of the cylinder head. The models are steady flow water-analogue of the optical IC engine with a fixed valve lift of 9.21 mm to simulate the induction flow at 270° bTDC. The applicability of MRV to engine flows despite the differences in experimental operating parameters between the steady flow model and the optical IC engine are demonstrated and well addressed in this manuscript and in a previous work [1]. To provide trust into the MRV measurements, the data is validated with phase-averaged particle image velocimetry (PIV) measurements performed within the optical engine. The main geometrical changes between the cylinder heads include a variation of intake valve diameter and slight modifications to the exit of the intake port.
Technical Paper

The Effects of Intake Pressure on In-Cylinder Gas Velocities in an Optically Accessible Single-Cylinder Research Engine

2020-04-14
2020-01-0792
Particle image velocimetry measurements of the in-cylinder flow in an optically accessible single-cylinder research engine were taken to better understand the effects of intake pressure variations on the flow field. At a speed of 1500 rpm, the engine was run at six different intake pressure loads from 0.4 to 0.95 bar under motored operation. The average velocity fields show that the tumble center position is located closer to the piston and velocity magnitudes decrease with increasing pressure load. A closer investigation of the intake flow near the valves reveals sharp temporal gradients and differences in maximum and minimum velocity with varying intake pressure load which are attributed to intake pressure oscillations. Despite measures to eliminate acoustic oscillations in the intake system, high-frequency pressure oscillations are shown to be caused by the backflow of air from the exhaust to the intake pipe when the valves open, exciting acoustic modes in the fluid volume.
Technical Paper

CFD Modeling of Gas-Fuel Interaction and Mixture Formation in a Gasoline Direct-Injection Engine Coupled With the ECN Spray G Injector

2020-04-14
2020-01-0327
The thorough understanding of the effects due to the fuel direct injection process in modern gasoline direct injection engines has become a mandatory task to meet the most demanding regulations in terms of pollutant emissions. Within this context, computational fluid dynamics proves to be a powerful tool to investigate how the in-cylinder spray evolution influences the mixture distribution, the soot formation and the wall impingement. In this work, the authors proposed a comprehensive methodology to simulate the air-fuel mixture formation into a gasoline direct injection engine under multiple operating conditions. At first, a suitable set of spray sub-models, implemented into an open-source code, was tested on the Engine Combustion Network Spray G injector operating into a static vessel chamber. Such configuration was chosen as it represents a typical gasoline multi-hole injector, extensively used in modern gasoline direct injection engines.
Journal Article

Vehicle System Simulator: Development and Validation

2011-09-13
2011-01-2166
A graphical user interface (GUI) toolbox called Vehicle System Simulator (VSS) is developed in MATLAB to ease the use of this vehicle model and hopefully encourage its widespread application in the future. This toolbox uses the inherent MATLAB discrete-time solvers and is mainly based on Level-2 s-function design. This paper describes its built-in vehicle dynamics model based on multibody dynamics approach and nonlinear tire models, and traction/braking control systems including Cruise Control and Differential Braking systems. The built-in dynamics model is validated against CarSim 8 and the simulation results prove its accuracy. This paper illustrates the application of this new MATLAB toolbox called Vehicle System Simulator and discusses its development process, limitations, and future improvements.
Journal Article

Anthropomimetic Traction Control: Quarter Car Model

2011-09-13
2011-01-2178
Human expert drivers have the unique ability to combine correlated sensory inputs with repetitive learning to build complex perceptive models of the vehicle dynamics as well as certain key aspects of the tire-ground interface. This ability offers significant advantages for navigating a vehicle through the spatial and temporal uncertainties in a given environment. Conventional traction control algorithms utilize measurements of wheel slip to help insure that the wheels do not enter into an excessive slip condition such as burnout. This approach sacrifices peak performance to ensure that the slip limits are generic enough suck that burnout is avoided on a variety of surfaces: dry pavement, wet pavement, snow, gravel, etc. In this paper, a novel approach to traction control is developed using an anthropomimetic control synthesis strategy.
Journal Article

Linear Quadratic Game Theory Approach to Optimal Preview Control of Vehicle Lateral Motion

2011-04-12
2011-01-0963
Vehicle stability is maintained by proper interactions between the driver and vehicle stability control system. While driver describes the desired target path by commanding steering angle and acceleration/deceleration rates, vehicle stability controller tends to stabilize higher dynamics of the vehicle by correcting longitudinal, lateral, and roll accelerations. In this paper, a finite-horizon optimal solution to vehicle stability control is introduced in the presence of driver's dynamical decision making structure. The proposed concept is inspired by Nash strategy for exactly known systems with more than two players, in which driver, commanding steering wheel angle, and vehicle stability controller, applying compensated yaw moment through differential braking strategy, are defined as the dynamic players of the 2-player differential linear quadratic game.
Journal Article

Enhancement of Collision Mitigation Braking System Performance Through Real-Time Estimation of Tire-road Friction Coefficient by Means of Smart Tires

2012-09-24
2012-01-2014
In the case of modern day vehicle control systems employing a feedback control structure, a real-time estimate of the tire-road contact parameters is invaluable for enhancing the performance of the chassis control systems such as anti-lock braking systems (ABS) and electronic stability control (ESC) systems. However, at present, the commercially available tire monitoring systems are not equipped to sense and transmit high speed dynamic variables used for real-time active safety control systems. Consequently, under the circumstances of sudden changes to the road conditions, the driver's ability to maintain control of the vehicle maybe at risk. In many cases, this requires intervention from the chassis control systems onboard the vehicle. Although these systems perform well in a variety of situations, their performance can be improved if a real-time estimate of the tire-road friction coefficient is available.
Journal Article

Complex Eigenvalue Analysis and Brake Squeal: Traps, Shortcomings and their Removal

2012-09-17
2012-01-1814
Among many NVH problems brake squeal continues to be a difficult topic for design engineers and scientists. Both the experimental and the simulation approaches so far have failed to provide robust and reliable guidelines for the design of squeal free brakes. On the experimental side the problem clearly lies in the wide range of operating conditions which the brake encounters in its lifetime, in which it should be squeal free. From lab experiments alone, it is hardly possible to judge how far the system is from squeal, which implies that an extremely wide range of conditions is mandatory. Brake squeal simulation presents different challenges. Once a model for the brake has been formulated, including the excitation mechanism(s), it should be possible to check the robustness of a given design and system parameters against squeal. Complex eigenvalue analysis has become a standard industrial tool for squeal prediction, and is routinely applied to the simulation models.
Journal Article

Location-Aware Adaptive Vehicle Dynamics System: Concept Development

2014-04-01
2014-01-0121
One seminal question that faces a vehicle's driver (either human or computer) is predicting the capability of the vehicle as it encounters upcoming terrain. A Location-Aware Adaptive Vehicle Dynamics (LAAVD) System is developed to assist the driver in maintaining vehicle handling capabilities through various driving maneuvers. In contrast to current active safety systems, this system is predictive rather than reactive. This work provides the conceptual groundwork for the proposed system. The LAAVD System employs a predictor-corrector method in which the driver's input commands (throttle, brake, steering) and upcoming driving environment (terrain, traffic, weather) are predicted. An Intervention Strategy uses a novel measure of handling capability, the Performance Margin, to assess the need to intervene. The driver's throttle and brake control are modulated to affect desired changes to the Performance Margin in a manner that is minimally intrusive to the driver's control authority.
Technical Paper

Closed Loop Transaxle Synchronization Control Design

2010-04-12
2010-01-0817
This paper covers the development of a closed loop transaxle synchronization algorithm which was a key deliverable in the control system design for the L3 Enigma, a Battery Dominant Hybrid Electric Vehicle. Background information is provided to help the reader understand the history that lead to this unique solution of the input and output shaft synchronizing that typically takes place in a manual vehicle transmission or transaxle when shifting into a gear from another or into a gear from neutral when at speed. The algorithm stability is discussed as it applies to system stability and how stability impacts the speed at which a shift can take place. Results are simulated in The MathWorks Simulink programming environment and show how traction motor technology can be used to efficiently solve what is often a machine design issue. The vehicle test bed to which this research is applied is a parallel biodiesel hybrid electric vehicle called the Enigma.
Technical Paper

On the Relation between Rotor Asymmetry and Brake Squeal

2010-10-10
2010-01-1692
The squealing of disk and drum brakes is still a major problem to design engineers. It has been observed by Fieldhouse and others that the introduction of asymmetries into the brake rotor can lead to a reduction of brake noise. However this insight has not yet solved the squeal problem. One reason for this is that it is not a priori obvious which kind of asymmetries of the rotor are preferable and which ones are not. This lack of knowledge most likely originates from the fact that most models explaining disk brake squeal rely on a symmetric rotor. In this paper, models for disk brake squeal are presented which are suitable to study asymmetric brake rotors. The excitation mechanism for squeal is explained by the formulation of a stability problem. It is shown that multiple eigenfrequencies of the rotor make it extremely sensitive to self-excited vibrations, i.e. squeal.
Technical Paper

Yaw Stability Control and Emergency Roll Control for Vehicle Rollover Mitigation

2010-10-05
2010-01-1901
In this paper a yaw stability control algorithm along with an emergency roll control strategy have been developed. The yaw stability controller and emergency roll controller were both developed using linear two degree-of-freedom vehicle models. The yaw stability controller is based on Lyapunov stability criteria and uses vehicle lateral acceleration and yaw rate measurements to calculate the corrective yaw moment required to stabilize the vehicle yaw motion. The corrective yaw moment is then applied by means of a differential braking strategy in which one wheel is selected to be braked with appropriate brake torque applied. The emergency roll control strategy is based on a rollover coefficient related to vehicle static stability factor. The emergency roll control strategy utilizes vehicle lateral acceleration measurements to calculate the roll coefficient. If the roll coefficient exceeds some predetermined threshold value the emergency roll control strategy will deploy.
Technical Paper

Comparison of a Hydraulic Engine Mount to a Magnetorheological Engine Mount

2010-10-05
2010-01-1910
A comparison between a hydraulic engine mount and a mixed mode magnetorheological (MR) fluid engine mount is presented. MR fluid is a smart material that changes viscosity in the presence of a magnetic field. In other words, without the presence of a magnetic field, the fluid is classified as a Newtonian fluid, however; with the presence of a magnetic field, the fluid becomes classified as a Bingham plastic. The working modes of the MR mount are squeeze and flow. Hydraulic mounts were developed to address the conflicting requirements of the engine vibration profile. The engine vibration profile can be classified as large displacement in the low frequency range and small displacement in the high frequency range. The hydraulic mount used in this study is an as received OEM mount. The elastomeric top and bottom of the hydraulic mount were used to create the MR mount. In the paper, the advantages and disadvantages of each mount are discussed in detail.
Technical Paper

Probability-Based Methods for Fatigue Analysis

1992-02-01
920661
Modern fatigue analysis techniques, that can provide reliable estimates of the service performance of components and structures, are finding increasing use in vehicle development programs. A major objective of such efforts is the prediction of the field performance of a fleet of vehicles as influenced by the host of design, manufacturing, and performance variables. An approach to this complex problem, based on the incorporation of probability theory in established life prediction methods, is presented. In this way, quantitative estimates of the lifetime distribution of a population are obtained based on anticipated, or specified, variations in component geometry, material processing sequences, and service loading. The application of this approach is demonstrated through a case study of an automotive transmission component.
Technical Paper

Online and Real-Time Condition Prediction for Transmissions based on CAN-Signals

2017-03-28
2017-01-1627
An online and real-time Condition Prediction system, so-called lifetime monitoring system, was developed at the Institute for Mechatronic Systems in Mechanical Engineering (IMS) of the TU Darmstadt, which is intended for implementation in standard control units of series production cars. Without additional hardware and only based on sensors and signals already available in a standard car, the lifetime monitoring system aims at recording the load/usage profiles of transmission components in aggregated form and at estimating continuously their remaining useful life. For this purpose, the dynamic transmission input and output torques are acquired realistically through sensor fusion. In a further step, the lifetime monitoring system is used as an input-module for the introduction of innovative procedures to more load appropriate dimensioning, cost-efficient lightweight design, failure-free operation and predictive maintenance of transmissions.
Technical Paper

Simulation and Bench Testing of a GM 5.3L V8 Engine

2017-03-28
2017-01-1259
The Hybrid Electric Vehicle Team of Virginia Tech (HEVT) is currently modeling and bench testing powertrain components for a parallel plug-in hybrid electric vehicle (PHEV). The custom powertrain is being implemented in a 2016 Chevrolet Camaro for the EcoCAR 3 competition. The engine, a General Motors (GM) L83 5.3L V8 with Active Fuel Management (AFM) from a 2014 Silverado, is of particular importance for vehicle integration and functionality. The engine is one of two torque producing components in the powertrain. AFM allows the engine to deactivate four of the eight cylinders which is essential to meet competition goals to reduce petroleum energy use and greenhouse gas emissions. In-vehicle testing is performed with a 2014 Silverado on a closed course to understand the criteria to activate AFM. Parameters required for AFM activation are monitored by recording vehicle CAN bus traffic.
Technical Paper

Vehicle Mass Estimation from CAN Data and Drivetrain Torque Observer

2017-03-28
2017-01-1590
A method for estimating the vehicle mass in real time is presented. Traditional mass estimation methods suffer due a lack of knowledge of the vehicle parameters, the road surface conditions and most importantly the effect of the vehicle transmission. To resolve these issues, a method independent of a vehicle model is utilized in conjunction with a drivetrain output torque observer to obtain the estimate of the vehicle mass. Simulations and experimental track tests indicate that the method is able to accurately estimate the vehicle mass with a relatively fast rate of convergence compared to traditional methods.
X