Refine Your Search

Topic

Author

Search Results

Technical Paper

Optimizing an Automotive HVAC System for Enhancement of Acoustic Comfort

2021-09-15
2021-28-0147
The Indian automotive industry is going through a rapid transformation phase. Regulatory emission norms such as, migration from BSIV to BSVI engine, increased adoption of μ-hybrid, full electric and autonomous cars are examples of such rapid transformation. The upgradation of internal combustion engines for compliance with new regulatory norms (e.g., from BSIV to BSVI) has caused a significant change in the automotive acoustic performance. As the powertrain system are being upgraded and getting quieter, the on-board Heating, Ventilation and Air-Conditioning system (HVAC) system emerges as one of the prominent noise sources which strongly influences overall refinement levels inside the cabin. This in turns is affecting overall feeling of passenger’s comfort. The HVAC system of an automobile is a compact and yet a complex system designed to provide thermal comfort inside the car cabin.
Technical Paper

Multi Axis Fatigue Test of Lift Axle Assembly through Real Time Simulation Abstract

2021-09-22
2021-26-0486
This paper discusses the test setup and methodology required to validate complete lift axle assembly for simulating the real time test track data. The correlation of rig vs track is discussed. The approach for reduction of validation time by eliminating few of the non-damaging tracks/events, its correlation with real life condition is discussed, and details are presented. With increased competition, vehicle development time has reduced drastically in recent past. Bench test procedure using accelerated test cycle discussed in this paper will help to reduce development time and cost. Process briefed in this paper can also be used for similar test specification for other structural parts or complete suspension system of heavy commercial vehicles.
Technical Paper

Development of a Rapid Vehicle Steering Cooling System Using Thermoelectrics

2021-09-22
2021-26-0517
Nowadays automotive cabin comfort has become a necessity rather than an optional feature, with customers demanding more comfort features. Thermal comfort becomes an essential part of this expectation. Since steering wheel is the first surface that the driver will touch once he enters the vehicle, maintaining thermal comfort of steering wheel becomes important, especially in tropical countries like India where a car parked in hot weather can get significantly warm inside. In this work, two design concepts for automotive steering wheel thermal control based on thermoelectric effect are depicted along with a detailed mathematical model. Thermoelectric coolers were selected for this purpose as it is solid state, compact & scalable solution to achieve rapid cooling rates. This was the desired feature expected from an integration standpoint in automotive architecture.
Technical Paper

A Continuum Design Sensitivity Analysis of Vehicle Aggregates for Refined NVH Performance

2021-09-22
2021-26-0294
Transmission of vibration and noise to the occupants and especially driver contributes significantly to the quality perception of the motor vehicle and eventually, it affects the overall ride comfort. These forces mainly reach to customer through tactile locations, i.e. floor, gearshift lever, steering wheel and seat. Showroom/Parking customer drive pattern of a vehicle evinces the steering system and driver’s seat rail vibration as strikingly linked aspect to evaluate human comfort [1]. This paper deals with the study of vibration at steering wheel and seat affecting human comfort at engine idle rpm with AC ON and OFF condition for passenger vehicles. The transmissibility of engine and radiator induced vibrations has been investigated with respect to modal alignment of steering and seat system.
Technical Paper

Overview of Various Scratch Test Methods for High Gloss Polymer Materials

2021-09-22
2021-26-0448
Polymers are substituting traditional materials, such as metals, in existing as well as new applications, both for structural and aesthetic applications as they are lightweight, customizable and are easy to mould into complex shapes. With such an extensive use of polymers, there is a need to carefully scrutinize their performance to ensure reliability. This is particularly the case in the automotive and electronic industries where the aesthetic appeal of their products is of prime concern and any visible scratch damage is undesirable. Concern for aesthetics has led to a need for the quantification of visibility due to scratch damage on polymeric surfaces Many painted plastic parts used in vehicles are being replaced with the molded-in color plastics for cost reduction and also due to environmental concerns associated with solvent emissions. There are multiple methods used for scratch evaluation of polymers and paints.
Technical Paper

Exhaust System Flange Joint Accelerated Durability - A Novel Way Converting Challenges to Opportunity

2021-09-22
2021-26-0472
The main objective of the exhaust system is to offer a leakage proof, noise proof, safe route for exhaust gases from engine to tailpipe, where they are released into the environment, while also processing them to meet the emission norms. New stringent emission norms demand ‘near-zero’ leakage exhaust systems, throughout vehicle life bringing the joints into focus as they are highly susceptible to leakage. Needless to say, this necessitates them to endure not only structural but also the environmental loads, throughout their life. Thus, the fatigue life or durability tests become the most critical part of the exhaust system development. Test acceleration and result correlation (for life prediction), to meet the stringent project timelines and stricter environmental norms are the key considerations for developing a new testing methodology. Quality of accelerated tests is ensured by deploying all possible multiple loads, to simulate real-life conditions.
Technical Paper

Development of IT Enabled System for Data Management to Meet EU Vehicle Recyclability Directives

2010-04-12
2010-01-0276
EU directive 2005/64/EC on type approval of motor vehicles with respect to their Reusability, Recyclability and Recoverability ( RRR ) requires vehicle manufacturers to put in place the necessary arrangements and procedures for Parts, Materials and Weight (PMW ) data collection from full chain of supply. This is required to perform the calculations of recyclability rate and recoverability rate in line with ISO 22628. Commonly practiced data collection methodologies included spreadsheet and use of internationally available IT support system for collection of material data. Data complexity and prohibitive cost for using Internationally available IT Support systems like IMDS (International Material Data System) has led to the in-house development of IT enabled Solution customizing Siemens PLM software product (Team centre Enterprise) and SAP (SRM suite).
Technical Paper

Elastomer Blend for Vibration Isolators to Meet Vehicle Key on - Key off Vibrations and Durability

2010-10-05
2010-01-1986
Success of the vehicle in the market depends on comfort provided while usage, which also include level of noise, vibration and harshness (NVH). In order to achieve good cabin comfort, the NVH levels have to be as low as possible. Powertrain is main source of NVH issues on vehicle and typically mounted on vehicle using rubber isolators. The dynamic characteristics of rubber isolators play vital role in reducing the vibrations transfer from powertrain to vehicle structure while operation and during dynamic conditions. Traditionally, isolators are manufactured using Natural Rubber (NR) to meet functional requirements which include vibration isolation and durability. At times either of above requirements has to be compromised or sacrificed due to the limitation in compounding process and other practical problems involved with manufacturing of rubber parts.
Technical Paper

Design Optimization of a Mini-Truck Hydraulic Power Steering System Based on Road Load Data (RLD)

2010-04-12
2010-01-0198
Today's automotive industry demands high quality component as well as system designs within very short period of time to provide more value added features to customers on one hand and to meet stringent safety standards on the other. To reconcile economy issues, design optimization has become a key issue. In the last few decades, many OEMs took to analytical tools like Computer-Aided-Engineering (CAE) tools in order to decrease the number of prototype builds and to speed up the time of development cycle. Although such analytical tools are relatively inexpensive to use and faster to implement as compared to the costly traditional design and testing processes: however, there are many variables that CAE tools cannot adequately consider, such as manufacturing processes, assembly, material anisotropy and residual stresses. Therefore, still smart measuring and testing techniques are required to substantiate the CAE results.
Technical Paper

Evaluation of Interdependent Behavior of Dual Mass Flywheel (DMF) and Engine Starting System

2010-04-12
2010-01-0188
Interdependency of automotive transmission aggregates on electrical/ electronics systems is increasing day by day, offering more comfort and features. For a system integrator, it becomes very much important while selecting/designing any such component to take into consideration the relationship between such interdependent components from performance as well as endurance point of view. DMF failures due to inadequate starting system, is a major stumbling block in development of DMF for a particular vehicle application. The interface of DMF and starting system of a vehicle makes it essential to consider the effect of one on another. The study shows that the majority of DMF failures happen because of resonance phenomenon in the DMF during engine starting. The improper selection of starter motor makes the DMF more vulnerable for such failures.
Technical Paper

Thermal Protection of Rear Mounted Engine and Its Components Using a Ventilation Fan with Unique Monitoring and Fault Diagnosis Technique

2017-03-28
2017-01-0620
The engine compartment of passenger car application contains various source which radiates the produced heat and raises the temperature level of the compartment. The rise in compartment temperature increases the body temperature of individual component. The rise in body temperature of critical components can endanger the durability or functionality of the specific component or a system in which it operates. The aim of this paper is to strategize thermal protection of the rear mounted engine and its components of a vehicle having radiator and cooling fan mounted in front. An additional ventilation fan with speed sensor is fitted alongside rear mounted engine and a unique monitoring technique framed in the EMS ECU to protect critical components like HT cables, alternators, ECUs, wiring harness etc. from thermal damage. The EMS continuously monitors the engine speed, vehicle speed and the PWM signal of ventilation fan to ensure the intended operation of the ventilation fan.
Technical Paper

A Method To Evaluate Passenger Thermal Comfort In Automobile Air Conditioning Systems

2017-01-10
2017-26-0150
In present day passenger cars, Mobile Air Conditioning (MAC) system is one of the essential features due to rise in overall ambient temperatures and comfort expectation of customers. During the development of MAC system, the focus is on cooling capacity of system for maintaining in-cabin temperatures. However, parameters like solar radiation, air velocities at occupant, relative humidity, metabolic rate and clothing of occupants also influence occupant’s thermal comfort and normally not considered in design of the MAC system. Subjective method is used to evaluate thermal comfort inside vehicle cabin which depends mainly on human psychology. To better understand the effect and minimize the human psychological factors a large sample of people are required. That process of evaluating the comfort inside the vehicle cabin is not only time consuming but also impractical.
Technical Paper

Grit Blasting on Synchronizer - To Resolve Early Crashing Complaint

2017-06-05
2017-01-1769
In today’s automobile market, most OEMs use manual transmission for cars. Gear Shifting is a crucial customer touch point. Any issue or inconvenience caused while shifting gears can result into customer dissatisfaction and will affect the brand image. Synchronizer is a vital subsystem for precise gear shifting mechanism. Based on vehicle application selection of synchronizer for given inertia and speed difference is a key factor which decides overall shift quality of gearbox. For more demanding driver abuse conditions like skip shifting, conventional brass synchronizers have proved inadequate for required speed difference and gear inertia, which eventually results into synchronizer crashing and affects driving performance. To increase synchronizer performance of multi-cone compact brass synchronizer, a ‘Grit blasting process’ has been added. These components tested with an accelerated test plan successfully.
Technical Paper

Energy Efficient Hydraulic Power Assisted Steering System (E2HPAS)

2012-04-16
2012-01-0976
A hydraulic-assisted power steering system on a vehicle has a steering pump which is directly driven from the engine continuously. In real world, the assistance from the steering pump is useful only while maneuvering. During a typical highway drive, assistance from this power steering pump remains unused for majority (76%) of the time; although the continuously rotating power steering pump keeps consuming energy from the engine. An electronic controller has been provided for the electro-magnetic pairing device of the power steering pump in order to provide assistance for steering based on driver demand only. The electromagnetic pairing device integrated on the steering pump can be made to engage/disengage based on the driver demand through the electronic controller.
Technical Paper

Elastomer Isolator Gear Design to Meet Noise, Vibration and Durability of Internal Combustion Engine

2013-09-24
2013-01-2380
Success of the vehicle in the market depends on comfort provided while usage, which also includes noise, vibration and harshness (NVH). In order to achieve comfort level, the NVH levels have to be as low as possible. Powertrain is the main source of NVH, in which internal combustion engine consists of crank shaft and balancer shaft. Crank shaft gear is connected and driven by crank shaft and balanced by integral eccentric mass coupled with gear. Balancer shaft is used for additional balancing of rotating masses. Pair of crank shaft and balancer shaft gears generates noise and vibration when unbalance in the system and backlash in the gears increase while usage. The practice of interposing a vibration isolator on the surface of gear has been so far resorted for preventing transmission of vibration, therefore reduction in noise. In the work presented, balancer gear was made with sandwich design to reduce noise. Sandwich design comprises of Inner hub and outer ring with lug projections.
Technical Paper

Test Methodology with Shock Loads and Fatigue Limit of Press Fitted Gears on Shaft

2013-11-27
2013-01-2794
In case of new generation of commercial vehicles, three shaft transmissions are designed with press fitted gears on counter shaft. It allows user to save the cost of transmission manufacturing by considerable amount. In case of heavy commercial vehicles, which are being used in abusive conditions such as mining and off-road applications, it becomes absolutely necessary to ensure that the gears press fit should withstand the continuous loads and impact loads. There are design guidelines available to ensure proper fit and torque carrying capacity between the mating parts. Still, there are gear slippage, shaft and gear breakage failures in the field. In this scenario, there is a need to develop bench test procedure which will capture such failures in the prototype stage. Looking at the failures in the field, it is necessary to capture all above hidden failures in design validation phase.
Technical Paper

Study of Key Attributes of Sustainability of Automobile Solutions in India

2022-10-05
2022-28-0313
The changing mobility landscape of India reveals that the erstwhile transport modes of the 20th century i.e., railways and road buses are making way for airlines, personal vehicles, shared mobility, metro rails. Rapid technological changes, stricter regulations, new transport cultures autonomous, connected, electric and shared (ACES), state-of-the-art and environmental concerns are shaping up the eco-system for automobiles. Despite these challenges roadways and automobiles will continue to be most prominent solution in India for future. But for that, the automobile sector should be agile, innovative, and adaptable to changing eco-system, vigilant to thwart threat of alternate mobility solutions and must provide sustainable solutions for the future. The purpose of this paper to evaluate various mobility solutions, ascertain prominence of upcoming automobile solutions and their sustainability for future in India.
Technical Paper

Seat Structure Comfort Evaluation Using Pink Noise and Human/Dummy Transmissibility Correlation

2013-11-27
2013-01-2852
Vehicle floor vibration is the resultant of different road inputs damped through various transfer paths. Seat comfort, which depends on these floor vibrations, can be evaluated with a single input signal “Pink noise”; which constitutes various road inputs. Transmissibility of seat structure on a vibration shaker with pink noise input includes all possible responses of road inputs. Still, transmissibility profile at vehicle end and component level varies. This is due to the utilization of “dummy” on component level testing on vibration shaker, which acts as a dead weight with dissimilar damping characteristics of human. A transmissibility correlation between human and dummy is attained by replacing the dummy in place of human and actuating it to find the difference in contribution between them for different class of vehicles. This contribution extrapolation from the damping effects of human and dummy is applied on dummy transmissibility.
Technical Paper

Simulation of Clutch Inertial Effects on Gear Shifting, Synchronizer Capacity and Accelerated Testing of Synchronizers

2013-11-27
2013-01-2807
In today's scenario, most of the OEMs use manual transmissions with synchronizer gear shifting system for ease of gear shifting. It gives very high fuel efficiency. Gear shifting is a customer touch point, hence it is very important to select adequate synchronizer capacity so that it will perform in better and last longer. To test the synchronizers, there are many test methods which give the idea about life of synchronizer and its performance, in different conditions. Regular synchronizer rig tests consume lot of time in deriving the results. So it is very important to find out a way which will give same results within short time period. To carry out the short time test or accelerated test, we need to understand the effect of various factors like reflected inertia, drag torque, differential speed, synchronizing time, and gear shifting force on synchronizer capacity.
Technical Paper

Empirical Investigation of Various Mobility Solutions for Urban Transport Planning: A Study from Western India

2022-10-05
2022-28-0314
Transportation has significant and long-lasting economic, social and environmental impacts which makes it an important dimension of urban sustainability. The World is witnessing rapid changes in modern traveling behavior, and efforts are continuously being made to stimulate sustainable mobility solutions with smart policies, new business models, and advanced technologies (connected cars, sensors, electrification). However, the shift is gradual in India when compared to developed countries due to unique barriers to emerging green mobility solutions. This paper empirically investigates public travel satisfaction and the primary factors for the selection of modes for different types of commutes. Quantitative data were collected including socio-demographic, travel mode choices, and preferred future mobility solutions from the western states of India.
X