Refine Your Search

Topic

Author

Search Results

Journal Article

Body Induced Boom Noise Control by Hybrid Integrated Approach for a Passenger Car

2013-05-13
2013-01-1920
Vehicle incab booming perception, a low frequency response of the structure to the various excitations presents a challenging task for the NVH engineers. The excitation to the structure causing boom can either be power train induced, depending upon the number of cylinders or the road inputs, while transfer paths for the excitation is mainly through the power train mounts or the suspension attachments to the body. The body responds to those input excitations by virtue of the dynamic behavior mainly governed by its modal characteristics. This paper explains in detail an integrated approach, of both experimental and numerical techniques devised to investigate the mechanism for boom noise generation. It is therefore important, to understand the modal behavior of the structure. The modal characteristics from the structural modal test enable to locate the natural frequencies and mode shapes of the body, which are likely to get excited due to the operating excitations.
Technical Paper

3D Simulation Methodology to Predict Passenger Thermal Comfort Inside a Cabin

2021-09-15
2021-28-0132
The vehicle Heating, Ventilation and Air conditioning (HVAC) system is designed to meet both the safety and thermal comfort requirements of the passengers inside the cabin. The thermal comfort requirement, however, is highly subjective and is usually met objectively by carrying out time dependent mapping of parameters like the velocity and temperature at various in-cabin locations. These target parameters are simulated for the vehicle interior for a case of hot soaking and its subsequent cool-down to test the efficacy of the AC system. Typically, AC performance is judged by air temperature at passenger locations, thermal comfort estimation along with time to reach comfortable condition for human. Simulating long transient vehicle cabin for thermal comfort evaluation is computationally expensive and involves complex cabin material modelling.
Technical Paper

Driveline Torsional Vibration Analysis and Clutch Damper Characteristics Optimization for reducing Commercial Vehicle Noise and Vibrations

2021-08-31
2021-01-1102
The automotive world has seen an increase in customer demands for vehicles having low noise and vibrations. One of the most important source of noise and vibrations associated with vehicles is the vibration of driveline systems. For commercial vehicles, the refinement of drivelines from NVH point of view is complex due to the cost and efficiency constraints. The typical rear wheel drive configuration of commercial vehicles mostly amplifies the torsional vibrations produced by engine which results into higher noise in the vehicle operating speed range. Theoretically, there are various options available for fine tuning the torsional vibration performance of the vehicle drive train. The mass moments of inertia and stiffness of the drivetrain components play significant role in torsional vibration damping, however, except minor changes to flywheel mass, it is hardly possible to change other components, subject to design limitations.
Technical Paper

Brake Groan Noise Investigation and Optimization Strategies for Passenger Vehicles

2021-09-22
2021-26-0301
Groan is a low frequency noise generated when moderate brake pressure is applied between the surfaces of the brake disc and the brake pad at a low-speed condition. Brake groan is often very intense and can cause large numbers of customer complaints. During a groan noise event, vehicle structure and suspension components are excited by the brake system and result in a violent event that can be heard and felt during brake application. The cause of noise is friction variation of stick-slip phenomenon between friction material and disc. Creep groan is the structure-borne noise that is related to dynamic characteristic of the vehicle. However, it has been mainly improved through friction material modifications in the past. In this paper, transfer path of creep groan noise was analyzed by means TPA and structural countermeasure to creep groan noise was suggested. This paper discusses the approach for prediction and mitigation of brake groan noise for passenger vehicles having disc brakes.
Technical Paper

Evolution of Multi Axis Suspension Test Rig from Reaction Type to Inertial Type

2021-09-22
2021-26-0471
This paper highlights the transition of multi-axis suspension test rig from fixed reacted type to semi-inertial type and the benefits derived thereof in simulation accuracies. The critical influence of ‘Mx’ and ‘Mz’ controls on simulation accuracies has been highlighted. The vital role of ‘Mz’ control in the resonance of wheel pan along ‘Z’ axis and thereof arresting unwanted failures modes in spindle has been duly emphasized. Finally, the role of constraints and boundary conditions on simulation accuracies has been demonstrated by replacing the reaction frame with vehicle body.
Journal Article

Front Under Run Protection Device Strength Test Certification Through FE Simulations

2011-04-12
2011-01-0529
Passive safety regulations specify minimum safety performance requirements of vehicle in terms of protecting its occupants and other road users in accident scenarios. Currently for majority cases, the compliance of vehicle design to passive safety regulations is assessed through physical testing. With increased number of products and more comprehensive passive safety requirements, the complexity of certification is getting challenged due to high cost involved in prototype parts and the market pressures for early product introduction through reduced product development timelines. One of the ways for addressing this challenge is to promote CAE based certification of vehicle designs for regulatory compliance. Since accuracy of CAE predictions have improved over a period of time, such an approach is accepted for few regulations like ECE-R 66/01, AIS069 etc which involves only loadings of the structures.
Technical Paper

A Low Cost Euro-III Development Strategy for 4 L Engine for Commercial Vehicle Application

2006-10-16
2006-01-3384
Reduction of NOx (Oxides of Nitrogen) and particulates from engine exhaust is one of the prime considerations in current research and development in automotive industry. The present paper describes the combustion optimization done on a four cylinder, 4 liter DI diesel engine to meet stringent Euro-III emission norms. The engine FIE (Fuel Injection Equipment) and injector geometry was optimized for performance and emission. Smoke measurements were considered as indicative of soot, to predict particulate emissions. This was done to simplify the overall process and save development time. It was concluded that by combining the flexibility of electronically controlled fuel injection begin, with improved nozzle technologies, with higher spray velocities and spray penetration, a considerable reduction in NOx and particulate emissions can be achieved. This can serve as a low cost solution, without any exhaust after-treatment systems.
Technical Paper

Design of Cabin Suspension Characteristics of Heavy Commercial Vehicle

2008-04-14
2008-01-0265
In the commercial vehicle business, Tractor-trailer combination vehicles are mostly used for carrying heavy loads for longer distances. To improve operating economy of the vehicle by reducing turn around time, it becomes a necessity to have a better driving comfort level for the vehicles. In a Tractor-trailer combination vehicle, due to point load acting on the tractor, pitching effect on the cab is very dominant. To overcome this pitching effect, a fully suspended cabin (suspended at four points) has been designed in order to have better ride comfort as compared to the fixed cabin. This paper discusses some of the measures taken to reduce the overall cabin pitching effect on Tractor -trailer combination vehicles.
Technical Paper

Design of Commercial Vehicle Cooling Packages

2008-04-14
2008-01-0264
Optimization of vehicle engine cooling package with requisite heat rejection capacity plays a key role in achieving most fuel economy and also in meeting the stringent noise norms. A set of design and operating features from existing vehicle engine cooling systems is reviewed and evaluated for their potential to provide optimized engine cooling. The features reviewed states significant potential in engine performance but these are balanced by satisfying required engine cooling requirement. Sets of trials are carried out on said vehicle with dissimilar features of cooling packages and the results are evaluated. Fuel economy trials in performance mode are carried out on vehicle with well thought-out cooling package for healthier comparison.
Technical Paper

A Simple, Cost Effective, Method of Evaluating Bump Steer and Brake Steer, and Achieving Correlation with ADAMS Analysis

2008-04-14
2008-01-0227
This paper proposes a cost effective method, with simple techniques, to evaluate Bump Steer and Brake Steer on a rigid axle vehicle under dynamic conditions. A relationship between calculated values, measured values and a subjective assessment of the vehicle lateral deviation is established. An array, of inter-relationship of the parameters such as offset of steering arm, draglink length, front spring stiffness, height of spring hanger bracket is done. Percentage of influence of the parameter change on the performance of the vehicle is evaluated and standard statistical analysis is used to arrive at inter-relationship of various parameters and ranking of their influence on lateral deviation of the vehicle under braking is established, there by resulting in reduction in iterative process. The results obtained display a good correlation with ADAMS Analysis to the tune of 90% and are in agreement with subjective assessment.
Technical Paper

“Dynamic Analysis of Cabin Tilting System of Heavy Trucks Using ADAMS-View for Development of a Software Interface for Optimization”

2008-10-07
2008-01-2683
Design of a Cabin Tilting System of heavy trucks, a multi degree of freedom mechanism, is a challenge. Factors like adequate tilting angle, cabin styling, packaging, non interference of tilting system with ride comfort, forces in the system, specifications of the hydraulic system, are all very important for designing the system. Numerous considerations make the design process highly iterative hence longer design time. This paper primarily focuses on Kinematics and Dynamic analysis of the system in ADAMS and validation of system with real time testing results. Intention of this work is to make a parametric ADAMS model and link it to a Knowledge Based Engineering application to facilitate designer to quickly carry out design iterations for reducing development time. The Knowledge Based Engineering software is made using object oriented language called ‘Object Definition Language’ which has been developed using C and C++ software languages.
Technical Paper

Experiments Planning for Robust Design through CAE

2006-10-31
2006-01-3518
This paper presents a systematic approach for designing an experiment in situations where expensive and time consuming computer simulations are used to evaluate product characteristics. In the presence of many design parameters, the critical step is to find the best possible experimental set up with minimum number of simulations. Usually in such situations, designers use their intuition and experience to carry out a number of simulation runs and choose the design that gives better performance. This intuitive approach can be considerably improved by using statistical methods. “Classical experimental designs” were compared with “space filling designs” in terms of their results and requirements. A typical clutch booster bracket is used as an example to demonstrate the methodology.
Technical Paper

Hill Start Assistance Developed for Buses Equipped with AMT

2016-04-05
2016-01-1111
The AMT (Automated Manual Transmission) has attracted increasing interest of automotive researches, because it has some advantages of both MT (Manual Transmission) and AT (Automatic Transmission), such as low cost, high efficiency, easy to use and good comfort. The hill-start assistance is an important feature of AMT. The vehicle will move backward, start with jerk, or cause engine stalling if failed on the slope road. For manual transmission, hill-start depends on the driver's skills to coordinate with the brake, clutch and throttle pedal to achieve a smooth start. However, with the AMT, clutch pedal is removed and therefore, driver can’t perceive the clutch position, making it difficult to hill-start with AMT without hill-start control strategy. This paper discussed about the hill start control strategy and its functioning.
Technical Paper

A DFSS Approach to Design Cooling System of Small Passenger Car Having Rear Engine and Front Mounted Radiator

2016-04-05
2016-01-0657
DFSS is a disciplined problem prevention approach which helps in achieving the most optimum design solution and provides improved and cost effective quality products. This paper presents the implementation of DFSS method to design a distinctive cooling system where engine is mounted in the rear and radiator is mounted in the front of the car. In automobile design, a rear-engine design layout places the engine at the rear of the vehicle. This layout is mainly found in small, entry level cars and light commercial vehicles chosen for three reasons - packaging, traction, and ease of manufacturing. In conventional Passenger cars, a radiator is located close to the engine for simple packaging and efficient thermal management. This paper is about designing a distinctive cooling system of a car having rear mounted engine and front mounted radiator.
Technical Paper

Combustion Mechanical Breakdown: A Comparison of the Multiple Regression Method versus the Coherence Method for a HSDI Diesel Powertrain

2011-01-19
2011-26-0035
In the automotive industry there are now several methodologies available to estimate the Combustion Mechanical Breakdown (CMB) of engine radiated noise. This paper compares the results of two different CMB analysis methodologies (multiple regression vs. coherence) performed on a HSDI diesel powertrain installed in an Engine Noise Test Cell (ENTC) and highlights the specific differences in the way each method defines combustion and mechanical noise.
Technical Paper

Clutch Hysteresis Maximization for Elimination of Gear Rattle in a Passenger Bus

2013-01-09
2013-26-0100
The acceptable noise and vibration performance is one of the most important requirements in a passenger bus as it is intended for widest spectrum of passengers covering all age groups. Gear rattle, being one of the critical factors for NVH and durability, plays a vital role in passenger comfort inside vehicle. The phenomenon of gear rattle happens due to irregularity in engine torque, causing impacts between the teeth of unloaded gear pairs of a gearbox which produce vibrations giving rise to this unacceptable acoustic response. In depth assessment of the dynamic behavior of systems and related components required to eliminate gear rattle. During normal running conditions, abnormal in-cab noise was perceived in a bus. Initial subjective evaluation revealed that the intensity was high during acceleration and deceleration. Objective measurements and analysis of the in-cab noise and vibration measurements had indicated that the noise is mainly due to gear rattling.
Technical Paper

Regenerative Braking Strategy for an Unaltered Mechanical Braking System of a Conventional Vehicle Converted into a Hybrid Vehicle

2013-01-09
2013-26-0155
Regenerative braking has become one of the major features for a hybrid vehicle as it converts brake energy into electrical energy storable into battery and leads to an increase in overall fuel efficiency of the vehicle. Traditional regenerative braking systems are designed such that the mechanical braking force from the friction brakes is varied in order to get maximum electric braking. This is the optimum method; however, such a system calls from electronics (Anti-lock Braking System) for regulation of mechanical braking leading to an increased cost. In this paper, the authors present a new strategy for implementing a regenerative brake strategy without changing the mechanical brake system of a conventional vehicle converted to a hybrid vehicle. The electric motor that serves as the traction motor or the Integrated Starter Generator (ISG) system, is used for regenerative braking also. There is no change in the other vehicle specifications as compared to the conventional vehicle.
Technical Paper

Development of Cost Effective Footpad to Mitigate Lower Leg Injury During Anti Vehicle IED Blast

2013-04-08
2013-01-1246
Improvised Explosive Devices (IEDs) and Anti-Tank (AT) mines are a significant threat for military vehicles and their occupants. These explosive devices are designed for the destruction and damage of armored and other vehicles, by using them in battle fields on routes of army vehicles. The blast event results in effects like shockwave, fragments, fire, gases, blast overpressure as well as the vertical impulse load. A blast event affects occupants inside the vehicle in the form of various types of injuries (lower leg, spinal, chest, head etc) and trauma. The Lower leg is the foremost injured body region in a blast event. The term lower leg is used to designate the tibia, fibula and the foot/ankle complex in this paper. Detonations occurring under a vehicle produce high velocity floorboard flutter/deformation and transmit axial loads to lower leg and create injuries.
Technical Paper

Derivation of Test Schedule for Clutch Using Road Load Data Analysis and Energy Dissipation as Basis

2018-04-03
2018-01-0404
During every clutch engagement energy is dissipated in clutch assembly because of relative slippage of clutch disc w.r.t. flywheel and pressure plate. Energy dissipated in clutch is governed by many design parameters like driveline configuration of the vehicle vis-a-vis vehicle mass, and operational parameters like road conditions, traffic conditions. Clutch burning failure, which is the major failure mode of clutch assembly, is governed by energy dissipation phenomenon during clutch engagement. Clutch undergoes different duty cycles during usage in city traffic, highways or hilly regions during its lifetime. A test schedule was derived using energy dissipated during every clutch engagement event as a base and using road load data collected on the vehicle. Road load data was collected in different road mix conditions comprised of city traffic, highway, hilly region, rough road for few hundred kilometers.
Technical Paper

Investigation on the Effect of Design Feature on Acoustic Performance of Exhaust Muffler for Vehicle

2022-12-23
2022-28-0488
Primarily, Acoustic performance of muffler are evaluated by insertion loss (IL) and backpressure/restriction. Where Insertion loss is mainly depends upon proper selection of muffler volume, which is proportional to Engine Swept volume, along with internal design configuration, which drives the acoustic principle. Same time, meeting the vehicle level pass by noise (PBN) value as per regulatory norms and system level backpressure as per engine specification sheet are the key evaluating criteria of any good exhaust system. Here, a new Reactive/Reflective type muffler of tiny size have been designed for heavy commercial vehicle application, which is unique in shape and innovative to meet desire performance. In this design, mainly sudden expansion, sudden contraction, flow through perforation and bell-mouth flow phenomenon are used.
X