Refine Your Search

Topic

Search Results

Viewing 1 to 17 of 17
Journal Article

Secondary Fuel Injection Layout Influences on DOC-DPF Active Regeneration Performance

2013-09-24
2013-01-2465
Catalysts and filters continue to be applied widely to meet particulate matter regulations across new and retrofit diesel engines. Soot management of the filter continues to be enhanced, including regeneration methodologies. Concerns regarding in-cylinder post-injection of fuel for active regeneration increases interests in directly injecting this fuel into the exhaust. Performance of secondary fuel injection layouts is discussed, and sensitivities on thermal uniformity are measured and analyzed, providing insight to packaging challenges and methods to characterize and improve application designs. Influences of end cone geometries, mixers, and injector mounting positions are quantified via thermal distribution at each substrate's outlet. A flow laboratory is applied for steady state characterization, repeated on an engine dynamometer, which also provides transient results across the NRTC.
Journal Article

Durability/Reliability Analysis, Simulation, and Testing of a Thermal Regeneration Unit for Exhaust Emission Control Systems

2012-09-24
2012-01-1951
Durability and reliability performance is one of the most important concerns of a recently developed Thermal Regeneration Unit for Exhaust (T.R.U.E-Clean®) for exhaust emission control. Like other ground vehicle systems, the T.R.U.E-Clean® system experiences cyclic loadings due to road vibrations leading to fatigue failure over time. Creep and oxidation cause damage at high temperature conditions which further shortens the life of the system and makes fatigue life assessment even more complex. Great efforts have been made to develop the ability to accurately and quickly assess the durability/reliability of the system in the early development stage. However, reliable and validated simplified engineering methods with rigorous mathematical and physical bases are still urgently needed to accurately manage the margin of safety and decrease the cost, whereas iterative testing is expensive and time consuming.
Technical Paper

DPF Acoustic Performance: An Evaluation of Various Substrate Materials and Soot Conditions

2011-09-13
2011-01-2198
The Diesel Particulate Filter (DPF) is used on today's diesel vehicles to reduce the amount of soot being released into the atmosphere from diesel exhaust. The DPFs are typically wall-flow filtration devices of various extruded porous ceramic materials with more than 95% efficiency. Once the filter has loaded with soot, the DPF undergoes regeneration where the exhaust temperature is raised to burn off the soot. With the DPF being relatively new aftertreatment technology, the exhaust industry must investigate the acoustic and performance effects of the DPF when added to an exhaust system. In many applications the DPF replaces the exhaust muffler because of limited packaging space. The acoustic performance of the DPF changes with increasing soot density and exhaust backpressure. The acoustic response is measured with physical testing at multiple soot load densities. This study is part of a graduation thesis project for Kettering University[1].
Technical Paper

DPF Regeneration Response: Coupling Various DPFs with a Thermal Regeneration Unit to Assess System Behaviors

2011-09-13
2011-01-2200
Diesel Particulate Filters (DPFs) have been successfully applied for several years to reduce Particulate Matter (PM) emissions from on-highway applications, and similar products are now also applied in off-highway markets and retrofit solutions. Most solutions are catalytically-based, necessitating minimum operating temperatures and demanding engine support strategies to reduce risks [1, 2, 3, 4, 5, 6, 7, 8]. An ignition-based thermal combustion device is applied with Cordierite and SiC filters, evaluating various DPF conditions, including effects of soot load, exhaust flow rates, catalytic coatings, and regeneration temperatures. System designs are described, including flow and temperature uniformity, as well as soot load distribution and thermal gradient response.
Technical Paper

CFD Optimization of Exhaust Manifold for Large Diesel Engine Aftertreatment Systems

2011-09-13
2011-01-2199
To meet EPA Tier IV large diesel engine emission targets, intensive development efforts are necessary to achieve NOx reduction and Particulate Matter (PM) reduction targets [1]. With respect to NOx reduction, liquid urea is typically used as the reagent to react with NOx via SCR catalyst [2]. Regarding to PM reduction, additional heat is required to raise exhaust temperature to reach DPF active / passive regeneration performance window [3]. Typically the heat can be generated by external diesel burners which allow diesel liquid droplets to react directly with oxygen in the exhaust gas [4]. Alternatively the heat can be generated by catalytic burners which enable diesel vapor to react with oxygen via DOC catalyst mostly through surface reactions [5].
Technical Paper

SOLID SCR®: Demonstrating an Improved Approach to NOx Reduction via a Solid Reductant

2011-09-13
2011-01-2207
Stringent global emissions legislation demands effective NOx reduction strategies, particularly for the aftertreatment, and current typical liquid urea SCR systems achieve efficiencies greater than 90% [1]. However, with such high-performing systems comes the trade-off of requiring a tank of reductant (urea water solution) to be filled regularly, usually as soon as the fuel fillings or as far as oil changes. Advantages of solid reductants, particularly ammonium carbamate, include greater ammonia densities, enabling the reductant refill interval to be extended several multiples versus a given reductant volume of urea, or diesel exhaust fluid (DEF) [2]. An additional advantage is direct gaseous ammonia dosing, enabling reductant injection at lower exhaust temperatures to widen its operational coverage achieving greater emissions reduction potential [3], as well as eliminating deposits, reducing mixing lengths, and avoiding freeze/thaw risks and investments.
Technical Paper

Performance Characterization of a Thermal Regeneration Unit for Exhaust Emissions Controls Systems

2011-09-13
2011-01-2208
Diesel Particulate Filters have been successfully applied for several years to reduce Particulate Matter (PM) emissions from on-highway applications, and similar products are now also applied in off-highway markets and retrofit solutions. As soot accumulates on the filter, backpressure increases, and eventually exhaust temperatures are elevated to burn off the soot, actively or passively. Unfortunately, in many real-world instances, some duty cycles never achieve necessary temperatures, and the ability of the engine and/or catalyst to elevate exhaust temperatures can be problematic, resulting in overloaded filters that have become clogged, necessitating service attention. An autonomous heat source is developed to eliminate such risks, applying an ignition-based combustor that leverages the current diesel fuel supply, providing necessary temperatures when needed, regardless of engine operating conditions.
Technical Paper

Design Improvements of Urea SCR Mixing for Medium-Duty Trucks

2013-04-08
2013-01-1074
To meet the 2010 diesel engine emission regulations, an aftertreatment system was developed to reduce HC, CO, NOx and soot. In NOx reduction, a baseline SCR module was designed to include urea injector, mixing decomposition tube and SCR catalysts. However, it was found that the baseline decomposition tube had unacceptable urea mixing performance and severe deposit issues largely because of poor hardware design. The purpose of this article is to describe necessary development work to improve the baseline system to achieve desired mixing targets. To this end, an emissions Flow Lab and computational fluid dynamics were used as the main tools to evaluate urea mixing solutions. Given the complicated urea spray transport and limited packaging space, intensive efforts were taken to develop pre-injector pipe geometry, post-injector cone geometry, single mixer design modifications, and dual mixer design options.
Technical Paper

Overview of Large Diesel Engine Aftertreatment System Development

2012-09-24
2012-01-1960
The introduction of stringent EPA 2015 regulations for locomotive / marine engines and IMO 2016 Tier III marine engines initiates the need to develop large diesel engine aftertreatment systems to drastically reduce emissions such as SOx, PM, NOx, unburned HC and CO. In essence, the aftertreatment systems must satisfy a comprehensive set of performance criteria with respect to back pressure, emission reduction efficiency, mixing, urea deposits, packaging, durability, cost and others. Given multiple development objectives, a systematic approach must be adopted with top-down structure that addresses top-level technical directions, mid-level subsystem layouts, and bottom-level component designs and implementations. This paper sets the objective to provide an overview of system development philosophy, and at the same time touch specific development scenarios as illustrations.
Technical Paper

Transient Performance of an HC LNC Aftertreatment System Applying Ethanol as the Reductant

2012-09-24
2012-01-1957
As emissions regulations around the world become more stringent, emerging markets are seeking alternative strategies that align with local infrastructures and conditions. A Lean NOx Catalyst (LNC) is developed that achieves up to 60% NOx reduction with ULSD as its reductant and ≻95% with ethanol-based fuel reductants. Opportunities exist in countries that already have an ethanol-based fuel infrastructure, such as Brazil, improving emissions reduction penetration rates without costs and complexities of establishing urea infrastructures. The LNC performance competes with urea SCR NOx reduction, catalyst volume, reductant consumption, and cost, plus it is proven to be durable, passing stationary test cycles and adequately recovering from sulfur poisoning. Controls are developed and applied on a 7.2L engine, an inline 6-cylinder non-EGR turbo diesel.
Technical Paper

CFD Modeling of Mini and Full Flow Burner Systems for Diesel Engine Aftertreatment under Low Temperature Conditions

2012-09-24
2012-01-1949
With introductions of stringent diesel engine emission regulations, the DOC and DPF systems have become the mainstream technology to eliminate soot particles through diesel combustion under various operation conditions. Urea-based SCR has been the mainstream technical direction to reduce NOx emissions. For both technologies, low-temperature conditions or cold start conditions pose challenges to activate DOC or SCR emission-reduction performance. To address this issue, mini or full flow burner systems may be used to increase exhaust temperature to reach DOC light-off or SCR initiation temperature by combustion of diesel fuel. In essence, the burner systems incorporate a fuel injector, spray atomization, proper fuel / air mixing mechanisms, and combustion control as independent heat sources.
Technical Paper

Probabilistic Thermal-Fatigue Life Assessment for Vehicle Exhaust Components and Systems

2014-09-30
2014-01-2305
Thermo-mechanical fatigue (TMF) resistance characterization and life assessment are extremely important in the durability/reliability design and validation of vehicle exhaust components/systems, which are subjected to combined thermal and mechanical loadings during operation. The current thermal-fatigue related design and validation for exhaust products are essentially based on testing and the interpretation of test results. However, thermal-fatigue testing are costly and time consuming, therefore, computer aided engineering (CAE) based virtual thermal-fatigue life assessment tools with predictive powers are strongly desired. Many thermal-fatigue methods have been developed and eventually implemented into the CAE tools; however, most of them are based on deterministic life assessment approach, which cannot provide satisfactory explanation for the observed uncertainties introduced in thermal-fatigue failure data.
Technical Paper

CFD Study of Sensitivity Parameters in SCR NOx Reduction Modeling

2014-09-30
2014-01-2346
The Diesel engine combustion process results in harmful exhaust emissions, mainly composed of Particulate Matter (PM), Hydro Carbon (HC), Carbon monoxide (CO) and Nitrogen Oxides (NOx). Several technologies have been developed in the past decades to control these diesel emissions. One of the promising and well matured technology of reducing NOx is to implement Selective Catalytic Reduction (SCR) using ammonia (NH3) as the reducing agent. For an effective SCR system, the aqueous urea solutions should be fully decomposed into ammonia and it should be well distributed across the SCR. In the catalyst, all the ammonia is utilized for NOx reduction process. In the design stage, it is more viable to implement Computational Fluid Dynamics (CFD) for design iterations to determine an optimized SCR system based on SCR flow distribution. And in later stage, experimental test is required to predict the after-treatment system performance based on NOx reduction.
Technical Paper

Virtual Test of Manufacturing Process Effect on Injector Design

2015-09-29
2015-01-2794
Diesel exhaust after treatment solutions using injection, such as urea-based SCR and lean NOx trap systems, effectively reduce the emission NOx level in various light vehicles, commercial vehicles, and industrial applications. The performance of the injector is crucial for successfully utilizing this type of technology, and a simulation tool plays an important role in the virtual design, that the performance of the injector is evaluated to reach the optimized design. The virtual test methodology using CFD to capture the fluid dynamics of the injector internal flow has been previously developed and validated for quantifying the dosing rate of the test injector. In this study, the capability of the virtual test methodology was extended to determine the spray angle of the test injector, and the effect of the manufacturing process on the injector internal nozzle flow characteristics was investigated using the enhanced virtual test methodology.
Technical Paper

Virtual Test of Injector Design Using CFD

2014-09-30
2014-01-2351
Diesel exhaust aftertreatment solutions using injection, such as urea-based SCR and lean NOx trap systems, effectively reduce the emission NOx level in various light vehicles, commercial vehicles, and industrial applications. The performance of the injector plays an important role in successfully utilizing this type of technology, and the CFD tool provides not only a time and cost-saving, but also a reliable solution for extensively design iterations for optimizing the injector internal nozzle flow design. Inspired by this fact, a virtual test methodology on injector dosing rate utilizing CFD was proposed for the design process of injector internal nozzle flows.
Technical Paper

Modeling of Close-Coupled SCR Concepts to Meet Future Cold Start Requirements for Heavy-Duty Engines

2019-04-02
2019-01-0984
The low-NOx standard for heavy-duty trucks proposed by the California Air Resources Board will require rapid warm-up of the aftertreatment system (ATS). Several different aftertreatment architectures and technologies, all based on selective catalytic reduction (SCR), are being considered to meet this need. One of these architectures, the close-coupled SCR (ccSCR), was evaluated in this study using two different physics-based, 1D models; the simulations focused on the first 300 seconds of the cold-start Federal Test Procedure (FTP). The first model, describing a real, EuroVI-compliant engine equipped with series turbochargers, was used to evaluate a ccSCR located either i) immediately downstream of the low-pressure turbine, ii) in between the two turbines, or iii) in a by-pass around the high pressure turbine.
Journal Article

Waste Heat Recovery for Light-Duty Truck Application Using ThermoAcoustic Converter Technology

2017-03-28
2017-01-0153
Nearly a third of the fuel energy is wasted through the exhaust of a vehicle. An efficient waste heat recovery process will undoubtedly lead to improved fuel efficiency and reduced greenhouse gas (GHG) emissions. Currently, there are multiple waste heat recovery technologies that are being investigated in the auto industry. One innovative waste heat recovery approach uses Thermoacoustic Converter (TAC) technology. Thermoacoustics is the field of physics related to the interaction of acoustic waves (sonic power) with heat flows. As in a heat engine, the TAC produces electric power where a temperature differential exists, which can be generated with engine exhaust (hot side) and coolant (cold side). Essentially, the TAC converts exhaust waste heat into electricity in two steps: 1) the exhaust waste heat is converted to acoustic energy (mechanical) and 2) the acoustic energy is converted to electrical energy.
X