Refine Your Search

Topic

Search Results

Viewing 1 to 16 of 16
Technical Paper

Overview and Future Plan of Automotive Electronic Systems

1986-10-20
861060
This paper provides an overview of automotive electronic systems put into products over the past decade, and describes automotive electronics which have been demonstrated in experimental cars. In addition, future electronic systems found to be promising for the practical use in coming years and the direction of development of electronics are also discussed, as an extention of the overview mentioned above.
Journal Article

Experimental Study of the Impact of Diesel/Biodiesel Blends Oxidation on the Fuel Injection System

2014-10-13
2014-01-2767
The stability of Diesel/Biodiesel blends can play an important role in deposits formation inside the fuel injection system (FIS). The impact of the stability of FAME/Diesel fuel blends on lacquer deposits formation and on the behavior and reliability of the FIS was investigated using blends of Rapeseed and Soybean methyl esters (RME, SME) and conventional Diesel fuel (volume fractions of RME and SME range from 0 to 20%v/v). Fuels were aged under accelerated conditions and tested on an injection test rig according to an operating cycle developed to provoke injector needle blocking. The soaking duration was found to affect injector fouling. A relationship between the injector fouling tendency and the fuel stability was established. Under current test condition, injectors fouling increased with fuel oxidation measured with Total-Acid-Number.
Technical Paper

HILS Application for Hybrid System Development

2007-08-05
2007-01-3469
The hybrid system has the typical advantage that it can realize various types of system control, because the system has two power units, engine and motor. On the other hand, however, constraints are increasing due to the complexity of the vehicle system. Compared to the conventional HILS construction and application, there are mainly two typical characteristics or themes for HV-HILS (i.e. HILS for hybrid vehicle control development). Firstly, HV-HILS requires full vehicle simulation environment, because the plural ECU control logic is intricately intertwined. Secondly, recent HILS system needs to run with more accurate or complicated plant models which are necessary to develop more accurate vehicle control logic.
Technical Paper

Fatigue Life Prediction on Rough Road Using Full Vehicle Co-simulation Model with Suspension Control

2010-04-12
2010-01-0952
A full vehicle multi-body dynamic (MBD) model with suspension control system is developed for fatigue life prediction under rough road condition. The model consists of tires, a trimmed body, heavy attached parts, powertrain, suspension, joints, and a driver model, and includes a suspension control system that varies characteristics of the suspension according to the rough road inputs. For tires, a commercial MBD tire model is employed with identifiable parameters. The models are simulated to run on the optically measured road surface of the proving ground. Apart from the trimmed body, several important heavy attached parts are modeled separately, that represent dynamic behavior that induces complex body input load. These parts, along with suspension and powertrain systems are connected to the body using nonlinear elements such as joints, springs, and dampers. Contact conditions are used to represent mount bushing, hood lock, stopper rubber, etc.
Technical Paper

Development of New Concept Iridium Plug

2001-01-05
2001-01-1201
In the field of automotive gasoline engines, new products aiming at greater fuel economy and cleaner exhaust gases are under development with the aim of preventing environmental destruction. Severe ignition environments such as lean combustion, stronger charge motion, and large quantities of EGR require ever greater combustion stability. In an effort to meet these requirements, an iridium plug has been developed that achieves high ignitability and long service life through reduction of its diameter, using a highly wear-resistant iridium alloy as the center electrode.(1)(2) Recently, direct injection engines have attracted attention. In stratified combustion, a feature of the direct injection engine, the introduction of rich air-fuel mixtures in the vicinity of the plug ignition region tends to cause carbon fouling. This necessitates plug carbon fouling resistance.
Technical Paper

Development of In-cylinder Mixture and Flame Propagation Distribution Measurement Device with Spark Plug Type Sensor

2011-08-30
2011-01-2045
A new method to measure in-cylinder flame propagation and mixture distribution has been developed. The distribution is derived from analyzing the temporal history of flame spectra of CH* and C2*, which are detected by a spark plug type sensor with multi-optical fibers. The validity of this method was confirmed by verifying that the measurement results corresponded with the results of high speed flame visualization and laser induced fluorescence (LIF) measurement. This method was also applied to analysis of cyclic combustion fluctuation on start-up in a direct injection spark ignition (DISI) engine, and its applicability was confirmed.
Technical Paper

Mechanism of Intake Valve Deposit Formation Part III: Effects of Gasoline Quality

1992-10-01
922265
Quality control of gasoline constituents and its effect on the Intake Valve Deposits (IVD) has become a recent issue. In this paper, the effects of gasoline and oil quality on intake valve deposits were investigated using an Intake Valve Deposit Test Bench and a Sludge Simulator. The deposit formation from the gasoline maximized at an intake valve temperature of approximately 160 °C, and the deposits formed from the engine oil were maximum at approximately 250 °C. Therefore, the contribution of the gasoline or the engine oil appears to depend on the engine conditions. The gasoline which contains MTBE or ethanol with no detergent additive slightly increases the deposition amount. The gasoline with a superior detergent significantly decreases the deposition amount even when MTBE or ethanol is blended in the gasoline. Appropriate detergent fuel additive retards the oil deterioration.
Technical Paper

Investigation on Oxidation Stability of Engine Oils Using Laboratory Scale Simulator

1995-10-01
952528
The purposes of this paper are to develop a new laboratory oxidation stability testing method and to clarify factors relative to the viscosity increase of engine oil. Polymerized products, obtained from the oil after a JASO M333-93 engine test, were found to consist mainly of carboxyl, nitrate and nitro compounds and to increase the oil viscosity. A good similarity between the JASO M333-93 test and the laboratory simulation test was found for the polymerized products. The products were obtained not by heating oil only in air but by heating oil while supplying a synthetic blowby gas consisting of fuel pyrolysis products, NO, SO2 and air. The laboratory test has also revealed that the viscosity increase depends on oil quality, organic Fe content and hydrocarbon composition in the fuel. Moreover, it has been found that blowby gas and organic Fe accelerate ZnDTP consumption and that aromatics concentration in the fuel correlates with the viscosity increase of oil.
Technical Paper

Development of Hybrid System for SUV

2005-04-11
2005-01-0273
Toyota Hybrid System (THS), that combines a gasoline engine and an electric motor was installed in the Prius, which was introduced in 1997 as the world's first mass-produced hybrid passenger car, and was vastly improved in 2003. The new Prius gained a status of highly innovative and practical vehicle. In 2005, combined with a V6 engine, THS had a further evolution as a Hybrid System for SUV, which was installed in the RX400h and Highlander Hybrid to be introduced into the world. This report will explain “new THS” which achieved both V8 engine power performance and compact class fuel economy, while securing the most stringent emission standard, SULEV.
Technical Paper

Future Automotive Technical Trends

1988-03-01
871155
This paper provides an overview of the automotive technology and its future trends mainly focussing on Japan. The future automotive technology will basically be on the projection of current technology, although it is expected more progress to be made in advanced and precision control systems. The application of electronics and development of new materials will play a very important role in this area.
Technical Paper

Toyota EC-HYMATIC – A New Full Time 4WD System for Automatic Transmission

1989-02-01
890526
Toyota has developed a new full time 4WD system, called “EC-HYMATIC” or Electronically Controlled - HYdraulic Multi-plate clutch Active Traction Intelligent Control. This system permits an automatic torque transfer, depending on driving conditions, for front and rear wheels under control of the speed difference between the two. The system developed consists of a center differential, a speed difference control clutch system employing multi-plate clutch, and a gear set for rear axle drive. The speed difference control clutch system is controlled by a unique electro-hydraulic system using a microcomputer. An extensive use of computer simulations and vehicle test and evaluation has successfully developed an appropriate control strategy for the clutch system. The new 4WD system, EC-HYMATIC, considerably improves handling characteristics, traction performance and stability of a 4WD vehicle.
Technical Paper

Technical Service Training in the “Hi-Tech” Era

1987-11-08
871243
In recent years, advanced technology has become more and more important in the design of automobiles. Therefore, if we wish our products to continue to display their full potential to the people who buy them, thus ensuring customer satisfaction with our products, we must, even in the area of after-soles service, ensure that the technical proficiency and knowledge of our technicians will continue to keep pace with advances in technology. To do this, we must carry out effective “high-tech” training for our dealer workshops this is our present and future challenge Toyota's technical service training system is now applied to some 50, 000 service technicians in around 10, 000 workshops throughout the world, and the proposed report will introduce this system and give some actual examples of technical training that is actually carried out.
Technical Paper

Toyota's U340E Four-speed Automatic Transaxle

2000-03-06
2000-01-1147
TOYOTA has designed a new family of automatic transaxles named the “Super ECT”. These are the next generation of automatic transaxles (AT), for FWD passenger cars. The aim of this development was compactness, lightness, and improvements in fuel economy and shift quality. There are several kinds of transaxles included in this group to match each of the FWD passenger cars and engines. The “U340E,” a four-speed automatic transaxle, has been developed as one member of this family. This is one of the most compact and light AT in its class, and has greatly contributed to the fuel economy of vehicles. This paper will give an overview of the “Super ECT” and the major features and performance of the U340E.
Technical Paper

Application of Dynamic Mode Decomposition to Influence the Driving Stability of Road Vehicles

2019-04-02
2019-01-0653
The recent growth of available computational resources has enabled the automotive industry to utilize unsteady Computational Fluid Dynamics (CFD) for their product development on a regular basis. Over the past years, it has been confirmed that unsteady CFD can accurately simulate the transient flow field around complex geometries. Concerning the aerodynamic properties of road vehicles, the detailed analysis of the transient flow field can help to improve the driving stability. Until now, however, there haven’t been many investigations that successfully identified a specific transient phenomenon from a simulated flow field corresponding to driving stability. This is because the unsteady flow field around a vehicle consists of various time and length scales and is therefore too complex to be analyzed with the same strategies as for steady state results.
Technical Paper

Simulator Motion Sickness Evaluation Based on Eye Mark Recording during Vestibulo-Ocular Reflex

2014-04-01
2014-01-0441
The driving simulator (DS) developed by Toyota Motor Corporation simulates acceleration using translational (XY direction) and tilting motions. However, the driver of the DS may perceive a feeling of rotation generated by the tilting motion, which is not generated in an actual vehicle. If the driver perceives rotation, a vestibulo-ocular reflex (VOR) is generated that results in an unnecessary correction in the driver's gaze. This generates a conflict between the vestibular and visual sensations of the driver and causes motion sickness. Although such motion sickness can be alleviated by reducing the tilting motion of the DS, this has the effect of increasing the amount of XY motion, which has a limited range. Therefore, it is desirable to limit the reduction in the tilting motion of the DS to the specific timing and amount required to alleviate motion sickness. However, the timing and extent of the VOR has yet to be accurately identified.
Technical Paper

Handling Analysis with Vehicle Dynamics Simulator

1997-02-24
971058
We have developed a vehicle test system called the Vehicle Dynamics Simulator (VDS). The system measures the handling characteristics in a transient state in the laboratory. The automobile suspensions are moved as on a road with the machine providing relative motion by force transducer platform beneath each tire. The detailed measurements of transitive motions and forces given to the wheel clarify the kinematics and compliance characteristics contributed to the good handling performance and stability. This paper presents the system introduction and the results of analyzing the suspensions characteristics by the new analytical technique for breaking down into a variety of compliance components in a transient state.
X