Refine Your Search

Topic

Search Results

Technical Paper

Experimental and theoretical study on the swirl exhaust system for diesel engines

2000-06-12
2000-05-0162
On the basis of modular pulse converter (MPC) exhaust system the authors present a new swirl exhaust system. Structural parameters on the swirl exhaust system and MPC system for N8160ZC diesel engine were calculated by a mathematical optimum method, and the two systems were tested under the same engine operation for comparison. Experimental results show that the swirl exhaust system has a better engine performance under most of the operating conditions than MPC system, but worse under the low-speed and part-load conditions. In order to understand the mechanism of this swirl exhaust system well, a three-dimensional particle dynamic analyzer (3D-PDA) was utilized to measure the steady turbulent airflow in a swirl three-branched model. The computational fluid dynamics (CFD) code KIVA was modified to simulate the flows. Computational results are in good agreement with measuring ones and reveal the swirl flow behavior in the junction.
Technical Paper

Dynamic Comprehensive Performance of Mufflers under Different Vehicle Running Conditions

2010-04-12
2010-01-0901
The effective matching of the exhaust mufflers and engines is an important measure to reduce the noise emission of running vehicles. Currently, the matching is based mainly on the steady state performance of engine. The muffler's influence on a vehicle's noise emission and sound quality under different running conditions is not generally considered. A comprehensive performance evaluation method is proposed to describe the muffler's influence on a commercial vehicle's noise emission, sound quality and exhaust back pressure under multiple working conditions. The weighted insertion loss and linearity coefficient were defined based on the test data of the exhaust noise under different engine loads and speeds. A comprehensive performance evaluation method was defined from the test data analysis of engine exhaust noise with different mufflers. Finally, the simulation results of the exhaust noise of a vehicle with different mufflers were compared with test data.
Technical Paper

Coordinated Control of EGR and VNT in Turbocharged Diesel Engine Based on Intake Air Mass Observer

2002-03-04
2002-01-1292
Coordinated EGR-VNT control based on the intake air mass observer is presented in this paper to deal with the transient AFR control of turbocharged diesel engine. The air mass model embedded in the observer is a Takagi-Sugeno fuzzy neural network trained with transient simulation results. It can predict the charged fresh air mass entering the cylinder. In a high load region, when EGR is not effective, the coordinated EGR-VNT control will also bring benefits to the transient air-fuel-ratio control. The simulation results of TDI engine model verify that the transient control strategy will allow a better control of the intake air mass, and thus improve air-fuel-ratio control and reduce NOx emission in transients.
Technical Paper

CFD Modeling of Mixture Preparation and Soot Formation in a Downsized Gasoline Direct Injection Engine

2016-04-05
2016-01-0586
With increasingly stringent requirements and regulations related to particulate matter(PM) emissions, manufacturers are paying more and more attention to emissions from gasoline direct injection(GDI) engines. The present paper proposes an improved two-step soot model. The model is applied in the Kiva-Chemkin program to simulate the processes of spray impinging, fuel mixture preparation, combustion and soot formation in a typical turbocharged downsized GDI engine. The simulation results show that soot formation in the GDI engine is attributed to non-uniform distribution of the air-fuel mixture and pool fire of wall film in the cylinder. Under homogeneous mode, increasing the injection advance angle can optimize fuel atomization and improve air-fuel mixing, thus reducing soot formation. However, an excessive injection advance angle may cause spray to impinge on the cylinder wall and this will sharply increase the soot emission.
Technical Paper

Development of Closed-loop Control Strategy for Urea-SCR Based on NOX Sensors

2011-04-12
2011-01-1324
Selective catalytic reduction (SCR) is a promising technology for diesel aftertreatment used to reduce NOX emission effectively. SCR can be used to meet Euro - and even stricter emission standards. Dosing of urea must be controlled to lower NOX emission and NH₃ slip synchronously under the emission standard limits. A type of closed-loop control strategy based on NOX sensors for SCR system was presented in this paper. To detect NOX emissions, two NOX sensors were installed before and after the catalyst. Meanwhile, to examine the trade-off relationship between NOX emission and NH₃ slip, influences of different control parameters to the control purpose were explored. These influences include space velocity, catalyst temperament, NOX conversion efficiency, NH₃ adsorption and desorption characteristics, and so on. Results were used to optimize the dosing control strategy of urea. Base dosage of urea was confirmed based on the signals of NOX sensor.
Technical Paper

Acoustic Matching Simulation of Muffler with Hybrid Approach

2011-05-17
2011-01-1516
Different limitations exist in the practical application of one-dimensional and three-dimensional methods on the acoustic simulation of muffler respectively. Thus, a hybrid one/three-dimensional approach is developed in present paper to carry out the acoustic simulation of muffler matching with the engine. The acoustic source characteristics of engine are computed with one-dimensional methods, and acoustic four pole parameters of muffler are computed with three-dimensional methods, respectively. And, the insertion loss of muffler is finally calculated. The insertion loss of a muffler equipped with Selective Catalytic Reduction (SCR) in a heavy duty vehicle is simulated. The numerical results agree well with the experimental results, which verifies the reliability and accuracy of the present approach.
Technical Paper

Optimal Feedback Control with in-Cylinder Pressure Sensor under Engine Start Conditions

2011-04-12
2011-01-1422
In-cylinder pressure sensor, which provides the means for precise combustion control to achieve improved fuel economy, lower emissions, higher comfort, additional diagnostic functions etc., is becoming a necessity in future diesel engines, especially for chemical-kinetics dominated PCCI (Premixed Charge Compression Ignition) or LTC (Low Temperature Combustion) engines. In this paper, new control strategy is investigated to utilize in-cylinder pressure information into engine start process, in order to guarantee the success of engine start and in the meantime prevent penalty of fuel economy or pollutant emissions due to excessive fuel injection. An engine start acceleration model is established to analyze the engine start process. “In-cylinder Combustion Analysis Tool” (i-CAT), is used to acquire and process the in-cylinder pressure data and deliver the combustion indices to ECU (Engine Control Unit). Feedback control is accomplished in ECU based on this information.
Technical Paper

The Impact of Fuel Properties from Chinese Market on the Particulate and VOCs Emissions of a PFI and a DIG Engine

2016-04-05
2016-01-0838
An experimental study of particulate matter and volatile organic compounds (VOCs) emissions was conducted on a direct injection gasoline (DIG) engine and a port fuel injection (PFI) engine which both were produced by Chinese original equipment manufacturers (OEMs) to investigate the impact of fuel properties from Chinese market on particulate and VOCs emissions from modern gasoline vehicles. The study in this paper is just the first step of the work which is to investigate the impact of gasoline fuel properties and light duty vehicle technologies on the primary and secondary emissions, which are the sources of particulate matter 2.5 (PM2.5) in the atmosphere in China. It is expected through the whole work to provide some suggestions and guidelines on how to improve air quality and mediate severe haze pollution in China through fuel quality control and vehicle technology advances.
Technical Paper

Comparison Between Air-Assisted and Airless Urea Spray for Diesel SCR System by PDA and CFD

2012-04-16
2012-01-1081
The urea NOx selective catalytic reduction (SCR) is an effective technique for the reduction of NOx emitted from diesel engines. Urea spray quality has significant effect on NOx conversion efficiency. The droplet diameter and velocity distribution of air-assisted and airless urea injection systems were obtained by particle dynamics analyzer (PDA) measurement under different spray injection flow rates. It was found that the atomization quality of air-assisted urea injection system is better than that of airless urea injection system. The penetration and spray cone angle were also investigated by high-speed photography. Especially the spray characteristics of air-assisted urea injection system were measured in the constant-volume-bomb by high-speed photography. The atomization and evaporation of airless urea injection systems were modeled using computational fluid dynamics (CFD) based on the experimental results. The numerical model was validated by the experimental results.
Technical Paper

Simultaneous Reductions in Diesel NOx and Smoke Emissions with Aqueous Metal-Salt Solutions Directly Injected into the Combustion Chamber

1996-05-01
961164
The effect of several aqueous metal-salt solutions on NOx and smoke lowering in an IDI diesel engine were examined. The solutions were directly injected into a divided chamber independent of the fuel injection. The results showed that significant lowering in NOx and smoke over a wide operation range could be achieved simultaneously with alkali metal solutions which were injected just prior to the fuel injection. With sodium-salt solutions, for instance, NOx decreased by more than 60 % and smoke decreased 50 % below conventional operation. The sodium-salt solution reduced dry soot significantly, while total particulate matter increased with increases in the water soluble fractions.
Technical Paper

Advancements in High Temperature Cylinder Liner and Piston Ring Tribology

2000-03-06
2000-01-1237
The high temperature tribology issue for uncooled Low Heat Rejection (LHR) diesel engines where the cylinder liner piston ring interface exceeds temperatures of 225°C to 250°C has existed for decades. It is a problem that has persistently prohibited advances in non-watercooled LHR engine development. Though the problem is not specific to non-watercooled LHR diesel engines, it is the topic of this research study for the past two and one half years. In the late 1970s and throughout the 1980s, a tremendous amount of research had been placed upon the development of the LHR diesel engine. LHR engine finite element design and cycle simulation models had been generated. Many of these projected the cylinder liner piston ring top ring reversal (TRR) temperature to exceed 540°C[1]. In order for the LHR diesel to succeed, a tribological solution for these high TRR temperatures had to be developed.
Technical Paper

Operating Characteristics and Description of a Dual Fuel Engine for Diesel-Natural Gas Heavy-Duty Operation

1999-10-25
1999-01-3523
This paper presents a dual fuel system for diesel-natural gas operation for a truck diesel engine, and describes results of testing and analysis of the operating characteristics of the engine. The research results show that rates of fuel consumption and fuel efficiencies are increased with this engine design, and heat consumption decreased with increasing load on the engine. The heat consumption rates at medium-high loads are lower than at light loads. At full loads, the dual fuel engine exhibits heat release in which start combustion is reduced and the following combustion is rapid. The engine is tested with an electronically controlled method to meet the requirement of engine output torque.
Technical Paper

Role of Wall Effect on Hot-Spot Induced Deflagration to Detonation in Iso-Octane/Air Mixture Under High Temperature and Pressure

2016-04-05
2016-01-0552
A 1-Dimensional (1-D) model of fluid dynamic and chemistry kinetics following hot spot auto-ignition has been developed to simulate the process from auto-ignition to pressure wave propagation. The role of wall effect on the physical-chemical interaction process is numerically studied. A pressure wave is generated after hot spot auto-ignition and gradually damped as it propagates. The reflection of the wall forms a reflected pressure wave with twice the amplitude of the incident wave near the wall. The superposition of the reflected and forward pressure waves reinforces the intensity of the initial pressure wave. Wall effect is determined by the distance between the hot spot center and the cylinder wall. Hot spot auto-ignition near the wall easily initiates detonation under high-temperature and high-pressure conditions because pressure wave reflection couples with chemical reactions and propagates in the mixture with high reactivity.
Technical Paper

Urea Decomposition at Low Temperature in SCR Systems for Diesel Engines

2014-10-13
2014-01-2808
Selective catalytic reduction (SCR) has been demonstrated as one of the most promising technologies to reduce NOx emissions from heavy-duty diesel engines. To meet the Euro VI regulations, the SCR system should achieve high NOx reduction efficiency even at low temperature. In the SCR system, NH3 is usually supplied by the injection of urea water solution (UWS), therefore it is important to improve the evaporation and decomposition efficiency of UWS at low temperature and minimize urea deposits. In this study, the UWS spray, urea decomposition, and the UWS impingement on pipe wall at low temperature were investigated based on an engine test bench and computational fluid dynamics (CFD) code. The decomposition of urea and deposits was analyzed using thermal gravimetric analysis (TGA), differential scanning calorimetry (DSC) and fourier transform infrared spectroscopy (FTIR).
Technical Paper

Impacts of Cold-Start and Gasoline RON on Particulate Emission from Vehicles Powered by GDI and PFI Engines

2014-10-13
2014-01-2836
An experimental study of particulate matter (PM) emission was conducted on four cars from Chinese market. Three cars were powered by gasoline direct injection (GDI) engines and one car was powered by a port fuel injection (PFI) engine. Particulate mass, number and size distribution were measured based on a chassis dynamometer over new European driving cycle (NEDC). The particulate emission behaviors during cold start and hot start NEDCs were compared to understand how the running conditions influence particulate emission. Three kinds of gasoline with RON 91.9, 94.0 and 97.4 were tested to find the impact of RON on particulate emission. Because of time and facilities constraints, only one cold/hot start NEDC was conducted for every vehicle fueled with every fuel. The test results showed that more particles were emitted during cold start condition (first 200s in NEDC). Compared with cold start NEDC, the particulate mass and number of hot start NEDC decreased by a wide margin.
Technical Paper

The Properties and Industry Applications of Nd: YAG Microchip Laser Feedback Interferometers

2014-04-01
2014-01-0830
This paper reports the extraordinary properties and industry applications of Nd: YAG Microchip Laser Feedback Interferometer, Nd: YAG LFI. The Michelson interferometer has been invented for more than a century and is widely used in science and industry today. The Nd: YAG LFI, which is based on laser feedback effect instead of ordinary interferometry, has the different structure from Michelson interferometer, and then extraordinary properties. Therefore the Nd: YAG LFI can be used as a traditional laser interferometer with nano-meter resolution and a few meters measurement range. At the same time Nd: YAG LFI can also measure the displacement of light, thin, black, transparent (water, alcohol, glass surface) objects, even liquid evaporation rate.
Technical Paper

Effects of Temporal and Spatial Distributions of Ignition and Combustion on Thermal Efficiency and Combustion Noise in DICI Engine

2014-04-01
2014-01-1248
The effects of the temporal and spatial distributions of ignition timings of combustion zones on combustion noise in a Direct Injection Compression Ignition (DICI) engine were studied using experimental tests and numerical simulations. The experiments were performed with different fuel injection strategies on a heavy-duty diesel engine. Cylinder pressure was measured with the sampling intervals of 0.1°CA in order to resolve noise components. The simulations were performed using the KIVA-3V code with detailed chemistry to analyze the in-cylinder ignition and combustion processes. The experimental results show that optimal sequential ignition and spatial distribution of combustion zones can be realized by adopting a two-stage injection strategy in which the proportion of the pilot injection fuel and the timings of the injections can be used to control the combustion process, thus resulting in simultaneously higher thermal efficiency and lower noise emissions.
Technical Paper

Investigation on Pre-ignition and Super-Knock in Highly Boosted Gasoline Direct Injection Engines

2014-04-01
2014-01-1212
High boost and direct injection hold the potential of enhanced power density and fuel consumption in the development of gasoline engines. However, super-knock with strong destructiveness was widely reported at low-speed and high-load operating regime in turbocharged GDI engines. The objective of this study is to clarify the characteristics of super-knock and to try to find some feasible solutions to suppress super-knock. To fast evaluate super-knock at low-speed and high-load regime, a rapid test procedure including three super-knock test sections of 5000 cycles with 3 idle operations, was proposed. The experimental data indicate that pre-ignition is not the sufficient condition for super-knock. Pre-ignition may lead to super-knock, heavy knock, slight knock, and non-knock. Compared with conventional knock, knock intensity of super-knock is much higher and the maximum amplitude of pressure rise at start of knock is more than one order of magnitude higher.
Technical Paper

Combustion Mode Switch by Integrating Stoichiometric ASSCI Mode in a Four-cylinder Gasoline SI/HCCI Engine

2014-04-01
2014-01-1288
Homogeneous Charge Compression Ignition (HCCI) and Spark Ignition (SI) dual-mode operation provides a practical solution to apply HCCI combustion in gasoline engines. However, the different requirements of air-fuel ratio and EGR ratio between HCCI combustion and SI combustion results in enormous control challenges in HCCI/SI mode switch. In this paper, HCCI combustion was achieved in a four-cylinder gasoline direct injection engine without knock and misfire using close-loop control by knock index. Assisted Spark Stratified Compression Ignition (ASSCI) combustion was obtained stably at medium-high load. ASSCI combustion exhibits two-stage heat release with initial flame propagation and controlled auto-ignition. The knock index of ASSCI combustion is less than HCCI combustion due to the lower pressure rise rate.
Technical Paper

Development of a Turbulence-induced Breakup Model for Gasoline Spray Simulation

2015-04-14
2015-01-0939
The design and optimization of a modern spray-guided gasoline direct injection engine require a thorough understanding of the fuel spray characteristics and atomization process. The fuel spray Computational Fluid Dynamics (CFD) modeling technology can be an effective means to study and predict spray characteristics, and as a consequence, to drastically reduce experimental work during the engine development process. For this reason, an accurate numerical simulation of the spray evolution process is imperative. Different models based on aerodynamically-induced breakup mechanism have been implemented to simulate spray atomization process in earlier studies, and the effect of turbulence from the injector nozzle is recently being concerned increasingly by engine researchers. In this study, a turbulence-induced primary breakup model coupled with aerodynamic instability is developed.
X