Refine Your Search

Topic

Search Results

Viewing 1 to 20 of 20
Journal Article

Experimental Investigation of Different Blends of Diesel and Gasoline (Dieseline) in a CI Engine

2014-10-13
2014-01-2686
Combustion behaviour and emissions characteristics of different blending ratios of diesel and gasoline fuels (Dieseline) were investigated in a light-duty 4-cylinder compression-ignition (CI) engine operating on partially premixed compression ignition (PPCI) mode. Experiments show that increasing volatility and reducing cetane number of fuels can help promote PPCI and consequently reduce particulate matter (PM) emissions while oxides of nitrogen (NOx) emissions reduction depends on the engine load. Three different blends, 0% (G0), 20% (G20) and 50% (G50) of gasoline mixed with diesel by volume, were studied and results were compared to the diesel-baseline with the same combustion phasing for all experiments. Engine speed was fixed at 1800rpm, while the engine load was varied from 1.38 to 7.85 bar BMEP with the exhaust gas recirculation (EGR) application.
Journal Article

The Effect of Exhaust Throttling on HCCI - Alternative Way to Control EGR and In-Cylinder Flow

2008-06-23
2008-01-1739
Homogeneous Charge Compression Ignition (HCCI) has emerged as a promising technology for reduction of exhaust emissions and improvement of fuel economy of internal combustion engines. There are generally two proposed methods of realizing the HCCI operation. The first is through the control of gas temperature in the cylinder and the second is through the control of chemical reactivity of the fuel and air mixture. EGR trapping, i.e., recycling a large quantity of hot burned gases by using special valve-train events (e.g. negative valve overlap), seems to be practical for many engine configurations and can be combined with any of the other HCCI enabling technologies. While this method has been widely researched, it is understood that the operating window of the HCCI engine with negative valve overlap is constrained, and the upper and lower load boundaries are greatly affected by the in-cylinder temperature.
Journal Article

An Investigation into the Characteristics of DISI Injector Deposits Using Advanced Analytical Methods

2014-10-13
2014-01-2722
There is an increasing recognition of injector deposit (ID) formation in fuel injection equipment as direct injection spark ignition (DISI) engine technologies advance to meet increasingly stringent emission legislation and fuel economy requirements. While it is known that the phenomena of ID in DISI engines can be influenced by changes in fuel composition, including increasing usage of aliphatic alcohols and additive chemistries to enhance fuel performance, there is however still a great deal of uncertainty regarding the physical and chemical structure of these deposits, and the mechanisms of deposit formation. In this study, a mechanical cracking sample preparation technique was developed to assess the deposits across DISI injectors fuelled with gasoline and blends of 85% ethanol (E85).
Journal Article

High Speed Imaging Study on the Spray Characteristics of Dieseline at Elevated Temperatures and Back Pressures

2014-04-01
2014-01-1415
Dieseline combustion as a concept combines the advantages of gasoline and diesel by offline or online blending the two fuels. Dieseline has become an attractive new compression ignition combustion concept in recent years and furthermore an approach to a full-boiling-range fuel. High speed imaging with near-parallel backlit light was used to investigate the spray characteristics of dieseline and pure fuels with a common rail diesel injection system in a constant volume vessel. The results were acquired at different blend ratios, and at different temperatures and back pressures at an injection pressure of 100MPa. The penetrations and the evaporation states were compared with those of gasoline and diesel. The spray profile was analyzed in both area and shape with statistical methods. The effect of gasoline percentage on the evaporation in the fuel spray was evaluated.
Technical Paper

CFD Analysis of Air Intake System with Negative Pressure on Intake Grill

2008-06-23
2008-01-1643
The objective of the current research was to predict and analyze the flow through the grill of air intake system which is positioned behind the front wheel arch of vehicle. Most of the vehicle used today locates the grill of air intake at the front side so to acquire benefit of ram effect. In some cases, however, the grill is located behind the vehicle to improve wading performance. The geometry of air intake system of Land Rover Freelander was used in the modelling approach. The study was focused on different flow speeds on the grill at high load operation where the air speed at the grill side is high and creates negative pressure. The CFD results are validated against experimental data of steady flow test bench.
Technical Paper

Effect of Fuel Temperature on Performance and Emissions of a Common Rail Diesel Engine Operating with Rapeseed Methyl Ester (RME)

2009-06-15
2009-01-1896
The paper presents analysis of performance and emission characteristics of a common rail diesel engine operating with RME, with and without EGR. In both cases, the RME fuel was pre-heated in a heat exchanger to control its temperature before being pumped to the common rail. The studied parameters include the in-cylinder pressure history, rate of heat release, mass fraction burned, and exhaust emissions. The results show that when the fuel temperature increases and the engine is operated without EGR, the brake specific fuel consumption (bsfc) decreases, engine efficiency increases and NOx emission slightly decreases. However, when EGR is used while fuel temperature is increased, the bsfc and engine efficiency is independent of fuel temperature while NOx slightly increases.
Technical Paper

Activity of Prototype Catalysts on Exhaust Emissions from Biodiesel Fuelled Engines

2008-10-06
2008-01-2514
A prototype catalyst has been developed and integrated within the aftertreatment exhaust system to control the HC, CO, PM and NOx emissions from diesel exhaust gas. The catalyst activity in removing HC and nano-particles was examined with exhaust gas from a diesel engine operating on biodiesel - Rapeseed Methyl Ester (RME). The tests were carried out at steady-state conditions for short periods of time, thus catalyst tolerance to sulphur was not examined. The prototype catalyst reduced the amount of hydrocarbons (HC) and the total PM. The quantity of particulate with electrical mobility diameter in nucleation mode size < 10nm, was significantly reduced over the catalyst. Moreover, it was observed that the use of EGR (20% vol.) for the biodiesel fuelled engine significantly increases the particle concentration in the accumulation mode with simultaneous reduction in the particle concentration in the nuclei mode.
Technical Paper

Diesel Engine Performance and Emissions when First Generation Meets Next Generation Biodiesel

2009-06-15
2009-01-1935
Limits on the total future potential of biodiesel fuel due to the availability of raw materials mean that ambitious 20% fuel replacement targets will need to be met by the use of both first and next generation biodiesel fuels. The use of higher percentage biodiesel blends requires engine recalibration, as it affects engine performance, combustion patterns and emissions. Previous work has shown that the combustion of 50:50 blends of biodiesel fuels (first generation RME and next generation synthetic fuel) can give diesel fuel-like performance (i.e. in-cylinder pressure, fuel injection and heat release patterns). This means engine recalibration can be avoided, plus a reduction in all the regulated emissions. Using a 30% biodiesel blend (with different first and next generation proportions) mixed with Diesel may be a more realistic future fuel.
Technical Paper

An Optical Study of DMF and Ethanol Combustion Under Dual-Injection Strategy

2012-04-16
2012-01-1237
The new fuel, 2, 5-dimenthylfuran, known as DMF, captured worldwide attention since the discovery of its new production method. As a potential bio-fuel, DMF is competitive to gasoline in many areas, such as energy density, combustion efficiency and emissions. However, little work has been performed on its unconventional combustion mode. In this work, high speed imaging and thermal investigation are carried out to study DMF and gasoline dual-injection on a single cylinder, direct injection spark ignition optical engine. This dual-injection strategy combines direct injection (DI) and port fuel injection (PFI) simultaneously which means two different fuels can blend in the cylinder with any ratio. It provides a flexible way to use bio-fuels with gasoline. DMF DI with gasoline PFI and ethanol DI with gasoline PFI are studied under different injection proportions (by volume) and IMEPs.
Technical Paper

Understanding the Role of Filtered EGR on PM Emissions

2011-08-30
2011-01-2080
In earlier work we have shown that engine operation with oxygenated fuels (e.g., biodiesel) reduces the particulate matter (PM) emissions and extends the engine tolerance to exhaust gas recirculation (EGR) before it reaches smoke limited conditions. The same result has also been reported when high cetane number fuels such as gas-to-liquid (GTL) are used. A likely mechanism for engine-out particulate growth is the reintroduction of particle nuclei into the cylinder through EGR. These recirculated PM particles serve as sites for further condensation and accumulation promoting larger and greater number of particles. In order to further our understanding of EGR influence on total PM production, a diesel particulate filter (DPF) was integrated into the EGR loop. A PM reduction of approximately 50% (soot) was achieved with diesel fuel through filtered EGR, whilst still maintaining a significant NOX reduction.
Technical Paper

Microkinetic Modelling for Propane Oxidation in Channel Flows of a Silver-Based Automotive Catalytic Converter

2011-08-30
2011-01-2094
Computational Fluid Dynamics (CFD) is used to simulate chemical reactions and transport phenomena occurring in a single channel of a honeycomb-type automotive catalytic converter under lean burn combustion. Microkinetic analysis is adopted to develop a detailed elementary reaction mechanism for propane oxidation on a silver catalyst. Activation energies are calculated based on the theory of the Unity Bond Index-Quadratic Exponential Potential (UBI-QEP) method. The order-of-magnitude of the pre-exponential factors is obtained from Transition State Theory (TST). Sensitivity analysis is applied to identify the important elementary steps and refine the pre-exponential factors of these reactions. These pre-exponential factors depend on inlet temperatures and propane concentration; therefore optimised pre-exponential factors are written in polynomial forms. The results of numerical simulations are validated by comparison with experimental data.
Technical Paper

Research of the Atkinson Cycle in the Spark Ignition Engine

2012-04-16
2012-01-0390
In the automotive industry, engine downsizing has been widely accepted as an enabler to improving the fuel economy and reducing the CO₂ emissions. The Atkinson cycle is one of the key technologies. In this paper, the Atkinson cycle with different expansion ratios are compared and analyzed. The investigation is compared with the benchmark whose expansion and compression ratio are identical. The aim is to understand the inherent characteristics of the over-expansion and its effect on the engine performance and emissions. The simulation results show that, the Atkinson cycle produces higher efficiency due to over-expansion. The Atkinson cycle has higher internal EGR compared with the benchmark at equivalent conditions, which contributes to lower the NOx and CO emissions.
Technical Paper

Impacts of Low-Level 2-Methylfuran Content in Gasoline on DISI Engine Combustion Behavior and Emissions

2013-04-08
2013-01-1317
Research studies show that 2-methylfuran (MF) is a promising gasoline alternative regarding its positive effect on engine performance and emissions. Before using pure MF in spark ignition engines, it is more likely to be used in a low-level blended form in gasoline. An experimental research study was carried out to investigate the impacts of low-level MF content in gasoline (volumetric 10% MF in blend) on direct-injection spark-ignition (DISI) engine combustion behavior and emissions. The tests were conducted on a single-cylinder spray-guided DISI research engine at an engine speed of 1500 rpm under stoichiometric conditions. The engine loads of 3.5 ~ 8.5 bar IMEP were tested and gasoline-optimized spark timing was used. Furthermore, the effects of spark timing, exhaust gas recirculation (EGR) and valve overlap on NOx emissions were tested.
Technical Paper

GDI Engine Performance and Emissions with Reformed Exhaust Gas Recirculation (REGR)

2013-04-08
2013-01-0537
Exhaust Gas Fuel Reforming has potential to be used for on-board generation of hydrogen rich gas, reformate, and to act as an energy recovery system allowing the capture of waste exhaust heat. High exhaust gas temperature drives endothermic reforming reactions that convert hydrocarbon fuel into gaseous fuel when combined with exhaust gas over a catalyst - the result is an increase in overall fuel energy that is proportional to waste energy capture. The paper demonstrates how the combustion of reformate in a direct injection gasoline (GDI) engine via Reformed Exhaust Gas Recirculation (REGR) can be beneficial to engine performance and emissions. Bottled reformate was inducted into a single cylinder GDI engine at a range of engine loads to compare REGR to conventional EGR. The reformate composition was selected to approximate reformate produced by exhaust gas fuel reforming at typical gasoline engine exhaust temperatures.
Technical Paper

Effect of Hydrogen Addition on Natural Gas HCCI Combustion

2004-06-08
2004-01-1972
Natural gas has a high auto-ignition temperature, requiring high compression ratios and/or intake charge heating to achieve HCCI (homogeneous charge compression ignition) engine operation. Previous work by the authors has shown that hydrogen addition improves combustion stability in various difficult combustion conditions. It is shown here that hydrogen, together with residual gas trapping, helps also in lowering the intake temperature required for HCCI. It has been argued in literature that the addition of hydrogen advances the start of combustion in the cylinder. This would translate into the lowering of the minimum intake temperature required for auto-ignition to occur during the compression stroke. The experimental results of this work show that, with hydrogen replacing part of the fuel, a decrease in intake air temperature requirement is observed for a range of engine loads, with larger reductions in temperature noted at lower loads.
Technical Paper

Influence of Coolant Temperature on Cold Start Performance of Diesel Passenger Car in Cold Environment

2016-02-01
2016-28-0142
Diesel engines are the versatile power source and is widely used in passenger car and commercial vehicle applications. Environmental temperature conditions, fuel quality, fuel injection strategies and lubricant have influence on cold start performance of the diesel engines. Strategies to overcome the cold start problem at very low ambient temperature include preheating of intake air, coolant, cylinder block. The present research work investigates the effect of coolant temperatures on passenger car diesel engine’s performance and exhaust emission characteristics during the cold start at cold ambient temperature conditions. The engine is soaked in the -7°C environment for 6 hours. The engine coolant is preheated to the desired coolant temperatures of 10 and 20°C by an external heater and the start ability tests were performed.
Technical Paper

Investigation on the Performance of Diesel Oxidation Catalyst during Cold Start at L ow Temperature Conditions

2014-10-13
2014-01-2712
Cold start is a critical operating condition for diesel engines because of the pollutant emissions produced by the unstable combustion and non-performance of after-treatment at lower temperatures. In this research investigation, a light-duty turbocharged diesel engine equipped with a common rail injection system was tested on a transient engine testing bed to study the starting process in terms of engine performance and emissions. The engine (including engine coolant, engine oil and fuel) was soaked in a cold cell at −7°C for at least 8 hours before starting the test. The engine operating parameters such as engine speed, air/fuel ratio, and EGR rate were recorded during the tests. Pollutant emissions (Hydrocarbon (HC), NOx, and particles both in mode of nucleation and accumulation) were measured before and after the Diesel Oxidation Catalyst (DOC). The results show that conversion efficiency of NOx was higher during acceleration period at −7°C start than the case of 20°C start.
Technical Paper

Investigation on the Self-Stabilization Feature of HCCI Combustion

2014-10-13
2014-01-2663
The combustion timing, work output and in-cylinder peak pressure for HCCI engines often converge to a stable equilibrium point, which implies that the HCCI combustion may have a self-stabilization feature. It is thought that this behavior is due to the competing residual-induced heating and dilution of the reactant gas. As one of the most important features of HCCI combustion, the self-stabilization behavior can give great guidance to people for designing controller for HCCI engine control. The self-stabilization features of HCCI combustion had been observed by many researchers and mentioned in some publications. However, there is no report to experimentally analyze this phenomenon individually. Due to the fuel injection normally ending during the NVO process and the spark plug is turned off for HCCI engines, there is no direct control approach between the Intake Valve Close (IVC) and the start of combustion.
Technical Paper

Thermal Performance of Diesel Aftertreatment: Material and Insulation CFD Analysis

2014-10-13
2014-01-2818
Recent developments in diesel engines lead to increased fuel efficiency and reduced exhaust gas temperature. Therefore more energy efficient aftertreatment systems are required to comply with tight emission regulations. In this study, a computational fluid dynamics package was used to investigate the thermal behaviour of a diesel aftertreatment system. A parametric study was carried out to identify the most influential pipework material and insulation characteristics in terms of thermal performance. In the case of the aftertreatment pipework and canning material effect, an array of different potential materials was selected and their effects on the emission conversion efficiency of a Diesel Oxidation Catalyst (DOC) were numerically investigated over a driving cycle. Results indicate that although the pipework material's volumetric heat capacity was decreased by a factor of four, the total emission reduction was only considerable during the cold start.
Technical Paper

Study of Effects of Deposit Formation on GDi Injector and Engine Performance

2020-09-15
2020-01-2099
Gasoline Direct Injection (GDI) vehicles now make up the majority of European new car sales and a significant share of the existing car parc. Despite delivering measurable engine efficiency benefits, GDI fuel systems are not without issues. Fuel injectors are susceptible to the formation of deposits in and around the injector nozzles holes. It is widely reported that these deposits can affect engine performance and that different fuels can alleviate the buildup of those deposits. This project aims to understand the underlying mechanisms of how deposit formation ultimately leads to a reduction in vehicle performance. Ten GDI fuel injectors, with differing levels of coking were taken from engine testing and consumer vehicles and compared using a range of imaging and engine tests. At the time of writing, a new GDI engine test is being developed by the Co-ordinating European Council (CEC) to be used by the fuel and fuel additive industry.
X