Refine Your Search

Topic

Search Results

Journal Article

Combination of In-Cylinder Pressure Signal Analysis and CFD Simulation for Knock Detection Purposes

2009-09-13
2009-24-0019
A detailed analysis of knocking events can help improving engine performance and diagnosis strategies. The paper aim is a better understanding of the phenomena involved in knocking combustions through the combination of CFD and signals analysis tools. CFD simulations have been used in order to reproduce knock effect on the in-cylinder pressure trace. In fact, the in-cylinder pressure signal holds information about waves propagation and heat losses: for the sake of the diagnosis it is important to relate knock severity to knock indexes values. For this purpose, a CFD model has been implemented, able to predict the combustion evolution with respect to Spark Advance, from non-knocking up to heavy knocking conditions. The CFD model validation phase is crucial for a correct representation of both regular and knocking combustions: the operation has been carried out by means of an accurate statistical analysis of experimental in-cylinder pressure data.
Journal Article

Experimental Characterization of the Geometrical Shape of ks-hole and Comparison of its Fluid Dynamic Performance Respect to Cylindrical and k-hole Layouts

2013-09-08
2013-24-0008
Diesel engine performances are strictly correlated to the fluid dynamic characteristics of the injection system. Actual Diesel engines employ injector characterized by micro-orifices operating at injection pressure till 20MPa. These main injection characteristics resulted in the critical relation between engine performance and injector hole shape. In the present study, the authors' attention was focused on the hole geometry influence on the main injector fluid dynamic characteristics. At this purpose, three different nozzle hole shapes were considered: cylindrical, k, and ks nozzle shapes. Because of the lack of information available about ks-hole real geometry, firstly it was completely characterized by the combined use of two non-destructive techniques. Secondly, all the three nozzle layouts were characterized from the fluid dynamic point of view by a fully transient CFD multiphase simulation methodology previously validated by the authors against experimental results.
Technical Paper

Thermal Efficiency Enhancement for Future Rightsized Boosted GDI Engines - Effectiveness of the Operation Point Strategies Depending on the Engine Type

2021-09-05
2021-24-0009
Internal combustion engines are the primary transportation mover for today society and they will likely continue to be for decades to come. Hybridization is the most common solution to reduce the petrol-fuels consumption and to respect the new raw emission limits. The gasoline engines designed for running together with an electric motor need to have a very high thermal efficiency because they must work at high loads, where engine thermal efficiency is close to the maximum one. Therefore, the technical solutions bringing to thermal efficiency enhancement were adopted on HVs (Hybrid Vehicles) prior to conventional vehicles. In these days, these solutions are going to be adopted on conventional vehicles too. The purpose of this work was to trace development guidelines useful for engine designers, based on the target power and focused on the maximization of the engine thermal efficiency, following the engine rightsizing concept.
Technical Paper

Development and Validation of a Virtual Sensor for Estimating the Maximum in-Cylinder Pressure of SI and GCI Engines

2021-09-05
2021-24-0026
This work focuses on the development and validation of a data-driven model capable of predicting the maximum in-cylinder pressure during the operation of an internal combustion engine, with the least possible computational effort. The model is based on two parameters, one that represents engine load and another one the combustion phase. Experimental data from four different gasoline engines, two turbocharged Gasoline Direct Injection Spark Ignition, a Naturally Aspirated SI and a Gasoline Compression Ignition engine, was used to calibrate and validate the model. Some of these engines were equipped with technologies such as Low-Pressure Exhaust Gas Recirculation and Water Injection or a compression ignition type of combustion in the case of the GCI engine. A vast amount of engine points were explored in order to cover as much as possible of the operating range when considering automotive applications and thus confirming the broad validity of the model.
Journal Article

Assessment of Advanced SGS Models for LES Analysis of ICE Wall-Bounded Flows - Part I: Basic Test Case

2016-03-14
2016-01-9041
Large Eddy Simulation (LES) represents nowadays one of the most promising techniques for the evaluation of the dynamics and evolution of turbulent structures characterizing internal combustion engines (ICE). In the present paper, subdivided into two parts, the capabilities of the open-source CFD code OpenFOAM® v2.3.0 are assessed in order to evaluate its suitability for engine cold flow LES analyses. Firstly, the code dissipative attitude is evaluated through an inviscid vortex convection test to ensure that the levels of numerical dissipation are compatible with LES needs. Quality and completeness estimators for LES simulations are then proposed. In particular the Pope M parameter is used as a LES completeness indicator while the LSR parameter provides useful insights far calibrating the grid density. Other parameters such as the two-grid LESIQk index are also discussed.
Journal Article

Combustion Indexes for Innovative Combustion Control

2017-09-04
2017-24-0079
The continuous development of modern Internal Combustion Engine (ICE) management systems is mainly aimed at combustion control improvement. Nowadays, performing an efficient combustion control is crucial for drivability improvement, efficiency increase and pollutant emissions reduction. These aspects are even more crucial when innovative combustions (such as LTC or RCCI) are performed, due to the high instability and the high sensitivity with respect to the injection parameters that are associated to this kind of combustion. Aging of all the components involved in the mixture preparation and combustion processes is another aspect particularly challenging, since not all the calibrations developed in the setup phase of a combustion control system may still be valid during engine life.
Technical Paper

Superheated Sprays of Alternative Fuels for Direct Injection Engines

2012-04-16
2012-01-1261
Alternative and oxygenated fuels are nowadays being studied in order to increase engine efficiency and reduce exhaust emissions and also to limit the automotive industry's economical dependency from crude oil. These fuels are considered more ecological compared to hydrocarbons because they are obtained using renewable sources. Fuels like anhydrous/hydrous ethanol, methanol or alcohol/gasoline blends which are injected in liquid form must vaporize quickly, especially in direct injection engines, therefore their volatility is a very important factor and strongly depends on thermodynamic conditions and chemical properties. When a multi-component fuel blend is injected into a low pressure environment below its saturation pressure, a rapid boiling of the most volatile component triggers a thermodynamic atomization mechanism. These kinds of sprays show smaller droplets and lower penetration compared to mechanical break up.
Technical Paper

Virtual GDI Engine as a Tool for Model-Based Calibration

2012-09-10
2012-01-1679
Recent and forthcoming fuel consumption reduction requirements and exhaust emissions regulations are forcing the development of innovative and particularly complex intake-engine-exhaust layouts. In the case of Spark Ignition (SI) engines, the necessity to further reduce fuel consumption has led to the adoption of direct injection systems, displacement downsizing, and challenging intake-exhaust configurations, such as multi-stage turbocharging or turbo-assist solutions. Further, the most recent turbo-GDI engines may be equipped with other fuel-reduction oriented technologies, such as Variable Valve Timing (VVT) systems, devices for actively control tumble/swirl in-cylinder flow components, and Exhaust Gas Recirculation (EGR) systems. Such degree of flexibility has a main drawback: the exponentially increasing effort required for optimal engine control calibration.
Technical Paper

Ethanol to Gasoline Ratio Detection via Time-Frequency Analysis of Engine Acoustic Emission

2012-09-10
2012-01-1629
In order to reduce both polluting emissions and fuel costs, many countries allow mixing ethanol to gasoline either in fixed percentages or in variable percentages. The resulting fuel is labeled E10 or E22, where the number specifies the ethanol percentage. This operation significantly changes way the stoichiometric value, which is the air-to-fuel mass ratio theoretically needed to completely burn the mixture. Ethanol concentration must be correctly estimated by the Engine Management System to optimally control exhaust emissions, fuel economy and engine performance. In fact, correct fuel quality recognition allows estimating the actual stoichiometric value, thus allowing the catalyst system to operate at maximum efficiency in any engine working point. Moreover, also other essential engine control functions should be adapted in real time by taking into account the quality of the fuel that is being used.
Technical Paper

Multicycle Simulation of the Mixture Formation Process of a PFI Gasoline Engine

2012-06-01
2011-01-2463
The mixture composition heavily influences the combustion process of Port Fuel Injection (PFI) engines. The local mixture air-index at the spark plug is closely related to combustion instabilities and the cycle-by-cycle Indicated Mean Effective Pressure (IMEP) Coefficient of Variation (CoV) well correlates with the variability of the flame kernel development. The needs of reducing the engine emissions and consumption push the engine manufactures to implement techniques providing a better control of the mixture quality in terms of homogeneity and variability. Simulating the mixture formation of a PFI engine by means of CFD techniques is a critical issue, since involved phenomena are highly heterogeneous and a two phase flow must be considered. The aim of the paper is to present a multi-cycle methodology for the simulation of the injection and the mixture formation processes of high performance PFI engine, based on the validation of all the main physical sub-models involved.
Technical Paper

Primary Breakup Model for Turbulent Liquid Jet Based on Ligament Evolution

2012-04-16
2012-01-0460
The overall performance of direct injection (DI) engines is strictly correlated to the fuel liquid spray evolution into the cylinder volume. More in detail, spray behavior can drastically affect mixture formation, combustion efficiency, cycle to cycle engine variability, soot amount, and lubricant contamination. For this reason, in DI engine an accurate numerical reproduction of the spray behavior is mandatory. In order to improve the spray simulation accuracy, authors defined a new atomization model based on experimental evidences about ligament and droplet formations from a turbulent liquid jet surface. The proposed atomization approach was based on the assumption that the droplet stripping in a turbulent liquid jet is mainly linked to ligament formations. Reynolds-averaged Navier Stokes (RANS) simulation method was adopted for the continuum phase while the liquid discrete phase is managed by Lagrangian approach.
Technical Paper

Development of a Novel Approach for Non-Intrusive Closed-Loop Heat Release Estimation in Diesel Engines

2013-04-08
2013-01-0314
Over the past years, policies affecting pollutant emissions control for Diesel engines have become more and more restrictive. In order to meet such requirements, innovative combustion control methods have currently become a key factor. Several studies demonstrate that the desired pollutant emission reduction can be achieved through a closed-loop combustion control based on in-cylinder pressure processing. Nevertheless, despite the fact that cylinder pressure sensors for on-board application have been recently developed, large scale deployment of such systems is currently hindered by unsatisfactory long term reliability and high costs. Whereas both the accuracy and the reliability of pressure measurement could be improved in future years, pressure sensors would still be a considerable part of the cost of the entire engine management system.
Technical Paper

Effects of Initial Conditions in Multidimensional Combustion Simulations of HSDI Diesel Engines

1999-03-01
1999-01-1180
The effects of numerical methodology in defining the initial conditions and simulating the compression stroke in D.I. diesel engine CFD computations are studied. Lumped and pointwise approaches were adopted in assigning the initial conditions at IVC. The lumped approach was coupled with a two-dimensional calculation of the compression stroke. The pointwise methodology was based on the results of an unsteady calculation of the intake stroke performed by using the STAR-CD code in the realistic engine and port geometry. Full engine and 60 deg. sector meshes were used in the compression stroke calculations in order to check the accuracy of the commonly applied axi-symmetric fluid dynamics assumption. Analysis of the evolution of the main fluid dynamics parameters revealed that local conditions at the time of injection strongly depend on the numerical procedure adopted.
Technical Paper

Modeling the Diesel Fuel Spray Breakup by Using a Hybrid Model

1999-03-01
1999-01-0226
Diesel engine CFD simulation is challenged by the need to improve the accuracy in the spray modeling due to the strong influence played by spray dynamics on evaporation rate, flow field, combustion process and emissions. This paper aims to present a hybrid model able to describe both primary and secondary breakup of high-dense high-pressure sprays. According to this approach, the model proposed by Huh and Gosman is used to compute the atomization of the liquid jet (primary breakup) while a modified version of the TAB model of O'Rourke and Amsden is used for the secondary breakup. The atomization model considers the jet turbulence at the nozzle exit and the growth of unstable wave on the jet surface. In order to validate the hybrid model, a free non-evaporating high-pressure-driven spray at engine like conditions has been simulated. The accuracy of the breakup time evaluation has been improved by tuning the TAB constant Ck according to the Pilch's experimental correlations.
Technical Paper

Fast Algorithm for On-Board Torque Estimation

1999-03-01
1999-01-0541
Electronic Throttle Control systems substitute the driver in commanding throttle position, with the driver acting on a potentiometer connected to the accelerator pedal. Such strategies allow precise control of air-fuel ratio and of other parameters, e.g. engine efficiency or vehicle driveability, but require detailed information about the engine operating conditions, in order to be implemented inside the Electronic Control Unit (ECU). In order to determine throttle position, an interpretation of the driver desire (revealed by the accelerator pedal position) is performed by the ECU. In our approach, such interpretation is carried out in terms of a torque request that can be appropriately addressed knowing the actual engine-vehicle operating conditions, which depend on the acting torques. Estimates of the torque due to in-cylinder pressure (indicated torque), as well as the torque required by the vehicle (load torque), must then be available to the control module.
Technical Paper

Analysis of the Mixture Formation at Partial Load Operating Condition: The Effect of the Throttle Valve Rotational Direction

2015-09-06
2015-24-2410
In the next incoming future the necessity of reducing the raw emissions leads to the challenge of an increment of the thermal engine efficiency. In particular it is necessary to increase the engine efficiency not only at full load but also at partial load conditions. In the open literature very few technical papers are available on the partial load conditions analysis. In the present paper the analysis of the effect of the throttle valve rotational direction on the mixture formation is analyzed. The engine was a PFI 4-valves motorcycle engine. The throttle valve opening angle was 17.2°, which lays between the very partial load and the partial load condition. The CFD code adopted for the analysis was the FIRE AVL code v. 2013.2. The exhaust, intake and compression phases till TDC were simulated: inlet/outlet boundary conditions from 1D simulations were imposed.
Technical Paper

Development of a 0D Model Starting from Different RANS CFD Tumble Flow Fields in Order to Predict the Turbulence Evolution at Ignition Timing

2014-11-11
2014-32-0048
Faster combustion and lower cycle-to-cycle variability are mandatory tasks for naturally aspirated engines to reduce emission levels and to increase engine efficiency. The promotion of a stable and coherent tumble structure is considered as one of the best way to promote the in-cylinder turbulence and therefore the combustion velocity. During the compression stroke the tumble vortex is deformed, accelerated and its breakdown in smaller eddies leads to the turbulence enhancement process. The prediction of the final level of turbulence for a particular engine operating point is crucial during the engine design process because it represents a practical comparative means for different engine solutions. The tumble ratio parameter value represents a first step toward the evaluation of the turbulence level at ignition time, but it has an intrinsic limit.
Technical Paper

Influence of Cylindrical, k, and ks Diesel Nozzle Shape on the Injector Internal Flow Field and on the Emerging Spray Characteristics

2014-04-01
2014-01-1428
Today, multi-hole Diesel injectors can be mainly characterized by three different nozzle hole shapes: cylindrical, k-hole, and ks-hole. The nozzle hole layout plays a direct influence on the injector internal flow field characteristics and, in particular, on the cavitation and turbulence evolution over the hole length. In turn, the changes on the injector internal flow correlated to the nozzle shape produce immediate effects on the emerging spray. In the present paper, the fluid dynamic performance of three different Diesel nozzle hole shapes are evaluated: cylindrical, k-hole, and ks-hole. The ks-hole geometry was experimentally characterized in order to find out its real internal shape. First, the three nozzle shapes were studied by a fully transient CFD multiphase simulation to understand their differences in the internal flow field evolutions. In detail, the attention was focused on the turbulence and cavitation levels at hole exit.
Technical Paper

Injection Pattern Investigation for Gasoline Partially Premixed Combustion Analysis

2019-09-09
2019-24-0112
Nowadays, compression-ignited engines are considered the most efficient and reliable technology for automotive applications. However, mainly due to the current emission regulations, that require increasingly stringent reductions of NOx and particulate matter, the use of diesel-like fuels is becoming a critical issue. For this reason, a large amount of research and experimentation is being carried out to investigate innovative combustion techniques suitable to simultaneously mitigate the production of NOx and soot, while improving engine efficiency. In this scenario, the combined use of compression-ignited engines and gasoline-like fuels proved to be very promising, especially in case the fuel is directly-injected in the combustion chamber at high pressure. The presented study analyzes the combustion process produced by the direct injection of small amounts of gasoline in a compression-ignited light-duty engine.
Technical Paper

Development and Validation of a Control-Oriented Analytic Engine Simulator

2019-09-09
2019-24-0002
Due to the recent anti-pollution policies, the performance increase in Spark Ignition (SI) engines is currently under the focus of automotive manufacturers. This trend drives control systems designers to investigate accurate solutions and build more sophisticated algorithms to increase the efficiency of this kind of engines. The development of a control strategy is composed of several phases and steps, and the first part of such process is typically spent in defining and investigating the logic of the strategy. During this phase it is often useful to have a light engine simulator, which allows to have robust synthetic combustion data with a low calibration and computational effort. In the first part of this paper, a description of the control-oriented ANalytical Engine SIMulator (ANESIM) is carried out.
X