Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

Integration of a Torsional Stiffness Model into an Existing Heavy Truck Vehicle Dynamics Model

2010-04-12
2010-01-0099
Torsional stiffness properties were developed for both a 53-foot box trailer and a 28-foot flatbed control trailer based on experimental measurements. In order to study the effect of torsional stiffness on the dynamics of a heavy truck vehicle dynamics computer model, static maneuvers were conducted comparing different torsional stiffness values to the original rigid vehicle model. Stiffness properties were first developed for a truck tractor model. It was found that the incorporation of a torsional stiffness model had only a minor effect on the overall tractor response for steady-state maneuvers up to 0.4 g lateral acceleration. The effect of torsional stiffness was also studied for the trailer portion of the existing model.
Technical Paper

Heavy Vehicles Kinematics of Automatic Emergency Braking Test Track Scenarios

2020-04-14
2020-01-0995
This paper presents the test track scenario design and analysis used to estimate the performances of heavy vehicles equipped with forward collision warning and automatic emergency braking systems in rear-end crash scenarios. The first part of this design and analysis study was to develop parameters for brake inputs in test track scenarios simulating a driver that has insufficiently applied the brakes to avoid a rear-end collision. In the second part of this study, the deceleration limits imposed by heavy vehicles mechanics and brake systems are used to estimate automatic emergency braking performance benefits with respect to minimum stopping distance requirements set by Federal Motor Vehicle Safety Standards. The results of this study were used to complete the test track procedures and show that all heavy vehicles meeting regulatory stopping distance requirements have the braking capacity to demonstrate rear-end crash avoidance improvements in the developed tests.
Journal Article

Hardware-in-the-Loop Pneumatic Braking System for Heavy Truck Testing of Advanced Electronic Safety Interventions

2016-04-05
2016-01-1648
The rapid innovation underway with vehicle brake safety systems leads to extensive evaluation and testing by system developers and regulatory agencies. The ability to evaluate complex heavy truck braking systems is potentially more rapid and economical through hardware-in-the-loop (HiL) simulation which employs the actual electronics and vehicle hardware. Though the initial HiL system development is time consuming and expensive, tests conducted on the completed system do not require track time, fuel, vehicle maintenance, or technician labor for driving or truck configuration changes. Truck and trailer configuration and loading as well as test scenarios can be rapidly adjusted within the vehicle dynamics simulation software to evaluate the performance of automated safety interventions (such as ESC) over a wide range of conditions.
Journal Article

Pedestrian Lower Extremity Response and Injury: A Small Sedan vs. A Large Sport Utility Vehicle

2008-04-14
2008-01-1245
Vehicle front-end geometry and stiffness characteristics have been shown to influence pedestrian lower extremity response and injury patterns. The goal of this study is to compare the lower extremity response and injuries of post mortem human surrogates (PMHS) tested in full-scale vehicle-pedestrian impact experiments with a small sedan and a large sport utility vehicle (SUV). The pelves and lower limbs of six PMHS were instrumented with six-degree-of-freedom instrumentation packages. The PMHS were then positioned laterally in mid-stance gait and subjected to vehicle impact at 40 km/h with either a small sedan (n=3) or a large SUV (n=3). Detailed descriptions of the pelvic and lower extremity injuries are presented in conjunction with global and local kinematics data and high speed video images. Injured PMHS knee joints reached peak lateral bending angles between 25 and 85 degrees (exceeding published injury criteria) at bending rates between 1.1 deg/ms and 3.7 deg/ms.
Journal Article

Preliminary Evaluation Methodology in Front-Front Vehicle Compatibility

2008-04-14
2008-01-0814
The injury outcome of a front-front two-vehicle crash will be a function of crash-specific, vehicle-specific, and occupant-specific parameters. This paper focuses on a preliminary methodology that was used to evaluate the potential for benefits in making vehicle-specific changes to improve the compatibility of light vehicles across the fleet. In particular, the effect on injury rates of matching vehicle frontal stiffness was estimated. The front-front crash data for belted drivers in the lighter vehicles in the crash from ten years of NASS-CDS data were examined. The frontal stiffness of each vehicle was calculated using data taken during full frontal rigid barrier tests for the U.S. New Car Assessment Program (NCAP), and only crashes coded in the CDS as “no override” were considered.
Journal Article

Classifiers to Augment the CDC System to Distinguish the Role of Structure in a Frontal Impact Taxonomy

2012-04-16
2012-01-0575
The purpose of the study was to distinguish the role of vehicle structure in frontal impacts in published coded National Automotive Sampling System (NASS-CDS) data. The criteria used: Collision Deformation Classification (CDC) coding rules, crush profile locator data and the projected location of longitudinal structural members in models of vehicle class sizes used by NASS-CDS. Two classifiers were developed to augment the CDC system. The Coincidence classifier indicates the relationship between the quadrant of the clock face the crash vector originates in and the aspect of the end plane the center of damage is located. It has three values: Linear (12 o'clock impacts) Consistent and Variant ("oblique" Principal Directions of Force or PDOFs). The second classifier indicates the number of longitudinal members engaged: 0, 1 or 2. NASS-CDS data for sample years 2005 to 2009 was filtered for occupants involved in impacts with the highest ranked speed change assigned to the front-end plane.
Journal Article

Validation of Real Time Hardware in the Loop Simulation for ESC Testing with a 6×4 Tractor and Trailer Models

2013-04-08
2013-01-0692
The tractor trailer models discussed in this paper were for a real-time hardware-in-the-loop (HIL) simulation to test heavy truck electronic stability control (ESC) systems [1]. The accuracy of the simulation results relies on the fidelity and accuracy of the vehicle parameters used. However in this case where hardware components are part of the simulation, their accuracy also affects the proper working of the simulation and ESC unit. Hence both the software and hardware components have to be validated. The validation process discussed in this paper is divided into two sections. The first section deals with the validation of the TruckSim vehicle model, where experimental data is compared with simulation results from TruckSim. Once the vehicle models are validated, they are incorporated in the HIL simulation and the second section discusses the validation of the whole HIL system with ESC.
Journal Article

Assessment of the Simulated Injury Monitor (SIMon) in Analyzing Head Injuries in Pedestrian Crashes

2012-04-16
2012-01-0569
Objectives. Examination of head injuries in the Pedestrian Crash Data Study (PCDS) indicates that many pedestrian head injuries are induced by a combination of head translation and rotation. The Simulated Injury Monitor (SIMon) is a computer algorithm that calculates both translational and rotational motion parameters relatable head injury. The objective of this study is to examine how effectively HIC and three SIMon correlates predict the presence of either their associated head injury or any serious head injury in pedestrian collisions. Methods. Ten reconstructions of actual pedestrian crashes documented by the PCDS were conducted using a combination of MADYMO simulations and experimental headform impacts. Linear accelerations of the head corresponding to a nine-accelerometer array were calculated within the MADYMO model's head simulation.
Technical Paper

The Interaction of Air Bags with Upper Extremities

1997-11-12
973324
Recently there has been a greater awareness of the increased risk of certain injuries associated with air bag deployment, especially the risks to small occupants, often women. These injuries include serious eye and upper extremity injuries and even fatalities. This study investigates the interaction of a deploying air bag with cadaveric upper extremities in a typical driving posture; testing concentrates on female occupants. The goals of this investigation are to determine the risk of upper extremity injury caused by primary contact with a deploying air bag and to elucidate the mechanisms of these upper extremity injuries. Five air bags were used that are representative of a wide range of air bag ‘aggressivities’ in the current automobile fleet. This air bag ‘aggressivity’ was quantified using the response of a dummy forearm under air bag deployment.
Technical Paper

A Musculoskeletal Model of the Upper Limb for Real Time Interaction

2007-06-12
2007-01-2488
With the ever-increasing power of real time graphics and computational ability of desktop computers, the desire for a real-time simulation of the musculoskeletal system has become more pronounced. It is important that this simulation is realistic, interactive, runs in real time, and looks realistic, especially in our climate of Hollywood special-effects and stunning video games. An effective simulation of the musculoskeletal system hinges on three key features: accurate modeling of kinematic movement, realistic modeling of the muscle attachment points, and determining the direction of the forces applied at the points. By taking known information about the musculoskeletal system and applying it in a real time environment, we have created such a model of the human arm. This model includes realistic constraints on the joints and real-time wrapping algorithms for muscle action lines.
Technical Paper

Validation Methodology Development for Predicted Posture

2007-06-12
2007-01-2467
As predictive capabilities advance and human-model fidelity increases, so must validation of such predictions and models. However, subjective validation is sufficient only as an initial indicator; thorough, systematic studies must be conducted as well. Thus, the purpose of this paper is to validate postures that are determined using single-objective optimization (SOO) and multi-objective optimization (MOO), as applied to the virtual human Santos™. In addition, a general methodology and tools for posture-prediction validation are presented. We find that using MOO provides improvement over SOO, and the results are realistic from both a subjective and objective perspective.
Technical Paper

Air Bags - Legions of Fable - Consumer Perceptions and Concerns

1998-02-23
980905
This paper discusses the consumer and news media perceptions about air bags that had to be taken into account by the National Highway Traffic Safety Administration in making rulemaking decisions in 1997. Addressing these perceptions was a major concern as the agency made preparations to allow identifiable groups of people at risk from an air bag deployments to have on-off switches installed in their vehicles.
Technical Paper

Parameter Determination and Vehicle Dynamics Modeling for The National Advanced Driving Simulator of the 2006 BMW 330i

2007-04-16
2007-01-0818
The paper discusses the development of a model for the 2006 BMW 330i for the National Advanced Driving Simulator's (NADS) vehicle dynamics simulation, NADSdyna. The front and rear suspensions are independent strut and link type suspensions modeled using recursive rigid-body dynamics formulations. The suspension springs and shock absorbers are modeled as force elements. The paper includes parameters for front and rear semi-empirical tire models used with NADSdyna. Longitudinal and lateral tire force plots are also included. The NADSdyna model provides state-of-the-art high-fidelity handling dynamics for real-time hardware-in-the-loop simulation. The realism of a particular model depends heavily on how the parameters are obtained from the actual physical system. Complex models do not guarantee high fidelity if the parameters used were not properly measured. Methodologies for determining the parameters are detailed in this paper.
Technical Paper

Restraint Robustness in Frontal Crashes

2007-04-16
2007-01-1181
The protection of a vehicle occupant in a frontal crash is a combination of vehicle front structural design and occupant restraint design. Once chosen and manufactured, these design features must interact with a wide variety of structural characteristics in potential crash partners. If robust, the restraint design will provide a high level of protection for a wide variety of crash conditions. This paper examines how robust a given restraint system is for occupant self-protection and how frontal design can improve the restraint performance of potential crash partners, thus improving their restraint robustness as well. To examine restraint robustness in self protection, the effect of various vehicle deceleration characteristics on occupant injury potential is investigated for a given restraint design. A MADYMO model of a 1996 Taurus interior and its restraint system with a Hybrid III 50th percentile male dummy are simulated and subjected to 650 crash pulses taken during 25 years of U.S.
Technical Paper

Determining the Precision of the Hybrid III Small Female Neck Calibration Laboratory Test Procedure Using ASTM E 691

2007-04-16
2007-01-1172
Lab-to-lab differences have become a very important consideration in the verification testing of Hybrid III 5th Female necks in user labs. It has been observed that a neck certified by one laboratory does not always pass the same certification test in a different lab. This has led the Anthropomorphic test device Certification Research group (ACR) to investigate the precision of the test procedure in relation to the test specification corridors. This study adapts an industry recognized ASTM procedure to measure the precision of the SAE neck calibration laboratory test procedure in Engineering Aid 25 [1]. The ASTM procedure is ASTM E 691-99 “Standard Practice for Conducting an Interlaboratory Study to Determine the Precision of a Test Method” [2]. This paper details how the ASTM procedure was adapted and presents the results of the ASTM E 691 statistical analysis procedures.
Technical Paper

Predicting Military Ground Vehicle Reliability using High Performance Computing

2007-04-16
2007-01-1421
To impact the decision making for military ground vehicles, we are using High Performance Computing (HPC) to speed up the time for analyzing the reliability of a design in modeling and simulation. We use parallelization to get accurate results in days rather than months. We can obtain accurate reliability prediction with modeling and simulation, using uncertainties and multiple physics-of-failure, but by utilizing parallel computing we get results in much less time than conventional analysis techniques.
Technical Paper

Comparative Performance Testing of Passenger Cars Relative to Fmvss 214 and the Ue 96/Ec/27 Side Impact Regulations: Phase I

1998-05-31
986168
Based on a long recognized need, the National Highway Traffic Safety Administration (NHTSA) has begun to reexamine the potential for international harmonization of side impact requirements. To this end, NHTSA, as directed by the U.S. Congress, has recently submitted a report to the Congress on the agency plans for achieving harmonization of the U.S. and European side impact regulations. The first phase of this plan involves crash testing vehicles compliant to FMVSS 214 to the European Union side impact directive 96/27/EC. This paper presents the results to date of this research. The level of safety performance of the vehicles based on the injury measures of the European and U.S. side impact regulations is assessed.
Technical Paper

Synthesis and Analysis of the Double-Axle Steering Mechanism Considering Dynamic Loads

2008-04-14
2008-01-1105
This paper investigates a hierarchical optimization procedure for the optimum synthesis of a double-axle steering mechanism by considering the dynamic load of a vehicle which is seldom discussed in the previous literature. Firstly, a multi-body model of double-axle steering is presented by characterizing the detailed leaf spring effect. Accordingly, the influences of dynamic load including the motion interference of steering linkage resulted from the elastic deformation of leaf spring, and the effects of wheel slip angle and the position discrepancy of wheel speed rotation centers are explored systematically. And then, a hierarchical optimization method based on target cascading methodology is proposed to classify the design variables of double-axle steering mechanism into four levels. At last, a double-axle steering mechanism of a heavy-duty truck is utilized to demonstrate the validity of this method.
Technical Paper

Simulator Study of Heavy Truck Air Disc Brake Effectiveness During Emergency Braking

2008-04-14
2008-01-1498
In crashes between heavy trucks and light vehicles, most of the fatalities are the occupants of the light vehicle. A reduction in heavy truck stopping distance should lead to a reduction in the number of crashes, the severity of crashes, and consequently the numbers of fatalities and injuries. This study made use of the National Advanced Driving Simulator (NADS). NADS is a full immersion driving simulator used to study driver behavior as well as driver-vehicle reactions and responses. The vehicle dynamics model of the existing heavy truck on NADS had been modified with the creation of two additional brake models. The first was a modified S-cam (larger drums and shoes) and the second was an air-actuated disc brake system. A sample of 108 CDL-licensed drivers was split evenly among the simulations using each of the three braking systems. The drivers were presented with four different emergency stopping situations.
Technical Paper

Multiple User Defined End-Effectors with Shared Memory Communication for Posture Prediction

2008-06-17
2008-01-1922
Inverse Kinematics on a human model combined with optimization provides a powerful tool to predict realistic human postures. A human posture prediction tool brings up the need for greater flexibility for the user, as well as efficient computation performance. This paper demonstrates new methods that were developed for the application of digital human simulation as a software package by allowing for any number of user specified end-effectors and increasing communication efficiency for posture prediction. The posture prediction package for the digital human, Santos™, uses optimization constrained by end-effectors on the body with targets in the environment, along with variable cost functions that are minimized, to solve for all joint angles in a human body. This results in realistic human postures which can be used to create optimal designs for things that humans can physically interact with.
X