Refine Your Search

Topic

Search Results

Viewing 1 to 19 of 19
Journal Article

Study of Air Flow Interaction with Pilot Injections in a Diesel Engine by Means of PIV Measurements

2017-03-28
2017-01-0617
With ever-demanding emission legislations in Compression Ignition (CI) engines, new premixed combustion strategies have been developed in recent years seeking both, emissions and performance improvements. Since it has been shown that in-cylinder air flow affects the combustion process, and hence the overall engine performance, the study of swirling structures and its interaction with fuel injection are of great interest. In this regard, possible Turbulent Kinetic Energy (TKE) distribution changes after fuel injection may be a key parameter for achieving performance improvements by reducing in-cylinder heat transfer. Consequently, this paper aims to gain an insight into spray-swirl interaction through the analysis of in-cylinder velocity fields measured by Particle Image Velocimetry (PIV) when PCCI conditions are proposed. Experiments are carried out in a single cylinder optical Diesel engine with bowl-in-piston geometry.
Journal Article

Particulates Size Distribution of Reactivity Controlled Compression Ignition (RCCI) on a Medium-Duty Engine Fueled with Diesel and Gasoline at Different Engine Speeds

2017-09-04
2017-24-0085
This work investigates the particulates size distribution of reactivity controlled compression ignition combustion, a dual-fuel concept which combines the port fuel injection of low-reactive/gasoline-like fuels with direct injection of highly reactive/diesel-like fuels. The particulates size distributions from 5-250 nm were measured using a scanning mobility particle sizer at six engine speeds, from 950 to 2200 rpm, and 25% engine load. The same procedure was followed for conventional diesel combustion. The study was performed in a single-cylinder engine derived from a stock medium-duty multi-cylinder diesel engine of 15.3:1 compression ratio. The combustion strategy proposed during the tests campaign was limited to accomplish both mechanical and emissions constraints. The results confirms that reactivity controlled compression ignition promotes ultra-low levels of nitrogen oxides and smoke emissions in the points tested.
Journal Article

A Combination of Swirl Ratio and Injection Strategy to Increase Engine Efficiency

2017-03-28
2017-01-0722
Growing awareness about CO2 emissions and their environmental implications are leading to an increase in the importance of thermal efficiency as criteria to design internal combustion engines (ICE). Heat transfer to the combustion chamber walls contributes to a decrease in the indicated efficiency. A strategy explored in this study to mitigate this efficiency loss is to promote low swirl conditions in the combustion chamber by using low swirl ratios. A decrease in swirl ratio leads to a reduction in heat transfer, but unfortunately, it can also lead to worsening of combustion development and a decrease in the gross indicated efficiency. Moreover, pumping work plays also an important role due to the effect of reduced intake restriction to generate the swirl motion. Current research evaluates the effect of a dedicated injection strategy to enhance combustion process when low swirl is used.
Journal Article

Numerical Methodology for Optimization of Compression-Ignited Engines Considering Combustion Noise Control

2018-04-03
2018-01-0193
It is challenging to develop highly efficient and clean engines while meeting user expectations in terms of performance, comfort, and drivability. One of the critical aspects in this regard is combustion noise control. Combustion noise accounts for about 40 percent of the overall engine noise in typical turbocharged diesel engines. The experimental investigation of noise generation is difficult due to its inherent complexity and measurement limitations. Therefore, it is important to develop efficient numerical strategies in order to gain a better understanding of the combustion noise mechanisms. In this work, a novel methodology was developed, combining computational fluid dynamics (CFD) modeling and genetic algorithm (GA) technique to optimize the combustion system hardware design of a high-speed direct injection (HSDI) diesel engine, with respect to various emissions and performance targets including combustion noise.
Journal Article

Computational and Experimental Investigation of Interfacial Area in Near-Field Diesel Spray Simulation

2017-03-28
2017-01-0859
The dense spray region in the near-field of diesel fuel injection remains an enigma. This region is difficult to interrogate with light in the visible range and difficult to model due to the rapid interaction between liquid and gas. In particular, modeling strategies that rely on Lagrangian particle tracking of droplets have struggled in this area. To better represent the strong interaction between phases, Eulerian modeling has proven particularly useful. Models built on the concept of surface area density are advantageous where primary and secondary atomization have not yet produced droplets, but rather form more complicated liquid structures. Surface area density, a more general concept than Lagrangian droplets, naturally represents liquid structures, no matter how complex. These surface area density models, however, have not been directly experimentally validated in the past due to the inability of optical methods to elucidate such a quantity.
Technical Paper

Characterization of Spray Evaporation and Mixing Using Blends of Commercial Gasoline and Diesel Fuels in Engine-Like Conditions

2017-03-28
2017-01-0843
Recent studies have shown that the use of highly premixed dual fuel combustion reduces pollutant emissions and fuel consumption in CI engines. The most common strategy for dual fueling is to use two injection systems. Port fuel injection for low reactivity fuel and direct injection for high reactivity fuel. This strategy implies some severe shortcomings for its real implementation in passenger cars such as the use of two fuel tanks. In this sense, the use of a single injection system for dual fueling could solve this drawback trying to maintain pollutant and efficiency benefits. Nonetheless, when single injection system is used, the spray characteristics become an essential issue. In this work the fundamental characteristics of dual-fuel sprays with a single injection system under non-evaporating engine-like conditions are presented.
Technical Paper

Influence of Direct-Injected Fuel Properties on Performance and Emissions from a Light-Duty Diesel Engine Running Under RCCI Combustion Mode

2018-04-03
2018-01-0250
The dual-fuel combustion mode known as reactivity controlled compression ignition (RCCI) allows an effective control of the combustion process by means of modulating the in-cylinder fuel reactivity depending on the engine operating conditions. This strategy has been found to be able to avoid the NOx-soot trade-off appearing during conventional diesel combustion (CDC), with diesel-like or better thermal efficiency in a great part of the engine map. The role of the low reactivity fuel properties and engine settings over RCCI combustion has been widely investigated in literature, concluding that the direct-injected fuel injection timing is a key parameter for controlling the in-cylinder fuel stratification. From this, it can be inferred that the physical and chemical characteristics of the direct-injected fuel should have also an important role on the RCCI combustion process.
Technical Paper

An Investigation on the Fuel Temperature Variations Along a Solenoid Operated Common-Rail Ballistic Injector by Means of an Adiabatic 1D Model

2018-04-03
2018-01-0275
Most studies about common-rail diesel injection consider the fuel flow along the injector as isothermal. This hypothesis is arguable given the small diameter of the orifices along which the fuel flows, together with the expansions that take place across them. These phenomena may provoke variations in the fuel temperature, which in turn modify the fuel properties (i.e. viscosity, density, speed of sound…), thus influencing injector dynamics as well as the fuel atomization and mixing processes. The present investigation accounts for these effects by means of a 1D model for the fuel flow along a common-rail ballistic injector. Local variations of fuel temperature and pressure are considered by the model thanks to the implementation of the adiabatic flow hypothesis.
Technical Paper

An Investigation of the Engine Combustion Network ‘Spray B’ in a Light Duty Single Cylinder Optical Engine

2018-04-03
2018-01-0220
Engine Combustion Network promotes fundamental investigations on a number of different spray configurations with the goal of providing experimental results under highly controlled conditions for CFD validation. Most of the available experiments up to now have been obtained in spray vessels, which miss some of the interactions governing spray evolution in the combustion chamber of an engine, such as the jet wall interaction and the transient conditions in the combustion chamber. The main aim of the present research is to compare the results obtained with a three-hole, 90 μm injector, known as ECN’s Spray B, in these constant-volume vessels and more recent Heavy-Duty engines with those obtained in a Light Duty Single Cylinder Optical Engine, under inert and reactive conditions, using n-dodecane. In-cylinder conditions during the injection were estimated by means of a 1-D and 0-D model simulation, accounting for heat transfer and in-cylinder mass evolution.
Technical Paper

Numerical Optimization of the Piston Bowl Geometry and Investigation of the Key Geometric Parameters for the Dual-Mode Dual-Fuel (DMDF) Concept under a Wide Load Range

2022-03-29
2022-01-0782
Focusing on the dual-mode dual-fuel (DMDF) combustion concept, a combined optimization of the piston bowl geometry with the fuel injection strategy was conducted at low, mid, and high loads. By coupling the KIVA-3V code with the enhanced genetic algorithm (GA), a total of 14 parameters including the piston bowl geometric parameters and the injection parameters were optimized with the objective of meeting Euro VI regulations while improving the fuel efficiency. The optimal piston bowl shape coupled with the corresponding injection strategy was summarized and integrated at various loads. Furthermore, the effects of the key geometric parameters were investigated in terms of organizing the in-cylinder flow, influencing the energy distribution, and affecting the emissions. The results indicate that the behavior of the DMDF combustion mode is further enhanced in the aspects of improving the fuel economy and controlling the emissions after the bowl geometry optimization.
Technical Paper

Experimental Evaluation of Methane-Hydrogen Mixtures for Enabling Stable Lean Combustion in Spark-Ignition Engines for Automotive Applications

2022-03-29
2022-01-0471
Economy decarbonization will be one of the main goals for the following years. Research efforts are being focused on reducing carbon-based emissions, by increasing the efficiency of the transport power plants while developing new fuel production methods that reduce the environmental footprint of the refinement process. Consequently, the depletion of conventional fuels derived from petroleum with high carbon content, such as gasoline and diesel, motivated the development of propulsive alternatives for the transportation sector. In this paradigm, methane (CH4) fuel appears as a mid-term solution due to its low carbon content, if compared with traditional fuels, and the low CO2 emissions during its production from renewable sources. However, the intrinsic properties of methane compromise the combustion process, subsequently increasing the emission of CO2.
Technical Paper

Development of a Novel Numerical Methodology for the Assessment of Insulating Coating Performance in Internal Combustion Engines

2021-04-06
2021-01-0413
In recent years, the automotive industry has been increasingly committed to developing new solutions for better and more efficient engines. One of them is the use of new insulating materials (thermal conductivity < 0.4 W/m-K, heat capacitance < 500 kJ/m3-K) to coat the engine combustion chamber walls, as well as the exhaust manifold. The main idea when coating the combustion chamber with these materials is to obtain a reduction of the temperature difference (thermal swing) between gas and walls during the engine cycle and minimize heat losses. Experimental measurements of the possible performance improvements are very difficult to obtain, mainly because the techniques available to measure wall temperature are limited. Therefore, simulations are typically used to investigate insulated combustion chambers. Nevertheless, the new generation of insulating coatings is posing challenges to numerical modelling, as layer thickness is very small (~100 μm).
Technical Paper

Nozzle Flow and Spray Development One-Way Coupling Methodology for a Multi-Hole GDi Injector

2019-09-09
2019-24-0031
The use of predictive models in the study of Internal Combustion Engines (ICE) allows reducing developing cost and times. However, those models are challenging due to the complex and multi-phase phenomena occurring in the combustion chamber, but also because of the different spatial and temporal scales in different components of the injection systems. This work presents a methodology to accurately simulate the spray by Discrete Droplet Models (DDM) without experimentally measuring the injector mass flow rate and/or momentum flux. Transient nozzle flow simulations are used instead to define the injection conditions of the spray model. The methodology is applied to a multi-hole Gasoline Direct injection (GDi) injector. Firstly, the DDM constant values are calibrated comparing simulation results to Diffused Back-light Illumination (DBI) experimental technique results. Secondly, transient nozzle flow simulations are carried out.
Technical Paper

PIV and DBI Experimental Characterization of Air Flow-Spray Interaction and Soot Formation in a Single Cylinder Optical Diesel Engine Using a Real Bowl Geometry Piston

2019-09-09
2019-24-0100
With demanding emissions legislations and the need for higher efficiency, new technologies for compression ignition engines are in development. One of them relies on reducing the heat losses of the engine during the combustion process as well as to devise injection strategies that reduce soot formation. Therefore, it is necessary a better comprehension about the turbulent kinetic energy (TKE) distribution inside the cylinder and how it is affected by the interaction between air flow motion and fuel spray. Furthermore, new diesel engines are characterized by massive decrease of NOx emissions. Therefore, considering the well-known NOx-soot trade-off, it is necessary a better comprehension and overall quantification of soot formation and how the different injection strategies can impact it.
Technical Paper

CFD Modelling of Hydrogen-Fueled SI Engines for Light-Duty Applications

2023-08-28
2023-24-0017
The employment of hydrogen as energy carrier for transportation sector represents a significant challenge for powertrains. Spark-ignition (SI) engines are feasible and low-cost devices to convert the hydrogen chemical energy into mechanical work. However, significant efforts are needed to successfully retrofit the available configurations. The computational fluid dynamics (CFD) modelling represents a useful tool to support experiments, clarifying the impact of the engine characteristics on both the mixture preparation and the combustion development. In this work, a CFD investigation is carried out on typical light-duty SI engine configurations, exploring the two main strategies of hydrogen addition: port fuel injection (PFI) and direct injection (DI). The purpose is to assess the behaviour of widely-used numerical models and methodologies when hydrogen is employed instead of traditional carbon-based fuels.
Technical Paper

Numerical Modeling of Hydrogen Combustion Using Preferential Species Diffusion, Detailed Chemistry and Adaptive Mesh Refinement in Internal Combustion Engines

2023-08-28
2023-24-0062
Mitigating human-made climate change means cutting greenhouse gas (GHG) emissions, especially carbon dioxide (CO2), which causes climate change. One approach to achieving this is to move to a carbon-free economy where carbon emissions are offset by carbon removal or sequestration. Transportation is a significant contributor to CO2 emissions, so finding renewable alternatives to fossil fuels is crucial. Green hydrogen-fueled engines can reduce the carbon footprint of transportation and help achieve a carbon-free economy. However, hydrogen combustion is challenging in an internal combustion engine due to flame instabilities, pre-ignition, and backfire. Numerical modeling of hydrogen combustion is necessary to optimize engine performance and reduce emissions. In this work, a numerical methodology is proposed to model lean hydrogen combustion in a turbocharged port fuel injection (PFI) spark-ignition (SI) engine for automotive applications.
Technical Paper

A Fast and Reliable CFD Approach to Design Hydrogen SI Engines for Industrial Applications

2023-06-26
2023-01-1208
SI engines fueled with hydrogen represent a promising powertrain solution to meet the ambitious target of carbon-free emissions at the tailpipe. Therefore, fast and reliable numerical tools can significantly support the automotive industry in the optimization of such technology. In this work, a 1D-3D methodology is presented to simulate in detail the combustion process with minimal computational effort. First, a 1D analysis of the complete engine cycle is carried out on the user-defined powertrain configuration. The purpose is to achieve reliable boundary conditions for the combustion chamber, based on realistic engine parameters. Then, a 3D simulation of the power-cycle is performed to mimic the combustion process. The flow velocity and turbulence distributions are initialized without the need of simulating the gas exchange process, according to a validated technique.
Technical Paper

Numerical Optimization of the Combustion System of a HD Compression Ignition Engine Fueled with DME Considering Current and Future Emission Standards

2018-04-03
2018-01-0247
A genetic algorithm (GA) optimization methodology is applied to the design of the combustion system of a heavy-duty (HD) Diesel engine fueled with dimethyl ether (DME). The study has two objectives, the optimization of a conventional diffusion-controlled combustion system aiming to achieve US2010 targets and the optimization of a stoichiometric combustion system coupled with a three way catalyst (TWC) to further control NOx emissions and achieve US2030 emission standards. These optimizations include the key combustion system related hardware, bowl geometry and injection nozzle design as input factors, together with the most relevant air management and injection settings. The GA was linked to the KIVA CFD code and an automated grid generation tool to perform a single-objective optimization. The target of the optimizations is to improve net indicated efficiency (NIE) while keeping NOx emissions, peak pressure and pressure rise rate under their corresponding target levels.
Technical Paper

A Modeling Tool for Particulate Emissions in GDI Engines with Emphasis on the Injector Zone

2023-04-11
2023-01-0182
Fuel film deposits on combustion chamber walls are understood to be the main source of particle emissions in GDI engines under homogenous charge operation. More precisely, the liquid film that remains on the injector tip after the end of injection is a fuel rich zone that undergoes pyrolysis reactions leading to the formation of poly-aromatic hydrocarbons (PAH) known to be the precursors of soot. The physical phenomena accompanying the fuel film deposit, evaporation, and the chemical reactions associated to the injector film are not yet fully understood and require high fidelity CFD simulations and controlled experimental campaigns in optically accessible engines. To this end, a simplified model based on physical principles is developed in this work, which couples an analytical model for liquid film formation and evaporation on the injector tip with a stochastic particle dynamics model for particle formation.
X