Refine Your Search

Topic

Search Results

Journal Article

A Technical and Financial Analysis of Potentially Near-Zero Greenhouse Gas Emission Passenger Vehicles

2013-04-08
2013-01-0496
This paper presents a technical and financial analysis of several, potentially near-zero greenhouse gas emission passenger vehicles for Australian driving conditions. Conventional, series hybrid, plug-in hybrid (PHEV) and fully electric (BEV) vehicles of class B and class E sizes are considered, with their propulsive energy assumed to originate from a source that is free of net greenhouse gas emissions. Extensions to the vehicle models developed by the authors in our previous works [1, 2, 3] are first developed. These enable estimation of the size of each major component in each powertrain, and therefore the total, in-service energy consumption and in-service greenhouse gas emissions. The component sizing also allows estimation of the each vehicle's purchase price, its embodied energy and its embodied greenhouse gas emissions, the latter assuming scenarios for both the current and a future, low emission intensity of Australian manufacturing.
Technical Paper

Optimizing the Design of the Air Flow Orifice or Restrictor for Race Car Applications

2007-08-05
2007-01-3553
Several race car competitions seek to limit engine power through a rule that requires all of the engine combustion air passes through a hole of prescribed diameter. As the approach and departure wall shapes to this hole, usually termed orifice or restrictor are not prescribed, there is opportunity for innovation in these shapes to obtain maximum flow and therefore power. This paper reports measurements made for a range of restrictor types including venturis with conical inlets and outlets of various angles and the application of slotted throats of the ‘Dall tube’ type. Although normal venturis have been optimized as subsonic flow measuring devices with minimum pressure losses, at the limit the flow in the throat is sonic and the down stream shocks associated with flow transition from sub-sonic to sonic are best handled with sudden angular changes and the boundary layer minimized by the corner slots between the convergent and divergent cones.
Technical Paper

Compression Ratio Effects on Performance, Efficiency, Emissions and Combustion in a Carbureted and PFI Small Engine

2007-08-05
2007-01-3623
This paper compares the performance, efficiency, emissions and combustion parameters of a prototype two cylinder 430 cm3 engine which has been tested in a variety of normally aspirated (NA) modes with compression ratio (CR) variations. Experiments were completed using 98-RON pump gasoline with modes defined by alterations to the induction system, which included carburetion and port fuel injection (PFI). The results from this paper provide some insight into the CR effects for small NA spark ignition (SI) engines. This information provides future direction for the development of smaller engines as engine downsizing grows in popularity due to rising oil prices and recent carbon dioxide (CO2) emission regulations. Results are displayed in the engine speed, manifold absolute pressure (MAP) and CR domains, with engine speeds exceeding 10000 rev/min and CRs ranging from 9 to 13. Combustion analysis is also included, allowing mass fraction burn (MFB) comparison.
Technical Paper

Comparing the Performance and Limitations of a Downsized Formula SAE Engine in Normally Aspirated, Supercharged and Turbocharged Modes

2006-11-13
2006-32-0072
This paper compares the performance of a small two cylinder, 430 cm3 engine which has been tested in a variety of normally aspirated (NA) and forced induction modes on 98-RON pump gasoline. These modes are defined by variations in the induction system and associated compression ratio (CR) alterations needed to avoid knock and maximize volumetric efficiency (ηVOL). These modes included: (A) NA with carburetion (B) NA with port fuel injection (PFI) (C) Mildly Supercharged (SC) with PFI (D) Highly Turbocharged (TC) with PFI The results have significant relevance in defining the limitations for small downsized spark ignition (SI) engines, with power increases needed via intake boosting to compensate for the reduced swept volume. Performance is compared in the varying modes with comparisons of brake mean effective pressure (BMEP), brake power, ηVOL, brake specific fuel consumption (BSFC) and brake thermal efficiency (ηTH).
Technical Paper

Experimental and Numerical Study of an Air Assisted Fuel Injector for a D.I.S.I. Engine

2007-04-16
2007-01-1415
The transient behaviour of the fuel spray from an air assisted fuel injector has been investigated both numerically and experimentally in a Constant Volume Chamber (CVC) and an optical engine. This two phase injector is difficult to analyse numerically and experimentally because of the strong coupling between the gas and liquid phases. The gas driven atomization of liquid fuel involves liquid film formation, separation and break up and also liquid droplet coalescence, break up, splashing, bouncing, evaporation and collision. Furthermore, the liquid phase is the dominant phase in many regions within the injector. Experimental results are obtained by using Mie scattering, Laser Induced Fluorescence (LIF) and Laser Sheet Drop sizing (LSD) techniques. Computational results are obtained by using a mixed Lagrangian/Eulerian approach in a commercial Computational Fluid Dynamic (CFD) code.
Technical Paper

Changes to Fim-Motogp Rules to Reduce Costs and Make Racing More Directly Relevant to Road Motorcycle Development

2008-12-02
2008-01-2957
The specific power densities and therefore the level of sophistication and costs of FIM-MOTOGP engines 800 cm3 in capacity have reached levels similar to those of the traditionally much more expensive FIA-Formula One engines and some racing developments have no application at all in the development of production bikes. The aim of the paper is therefore to review FIM-MOTOGP engine rules and make recommendations that could reduce costs and make racing more directly relevant to the development of production bikes while enhancing the significant interest in technical innovation by the sports' fans.
Technical Paper

Comparison of Pfi and Di Superbike Engines

2008-12-02
2008-01-2943
Gasoline Direct Injection (DI) is a technique that was successful in motor sports several decades ago and is now relatively popular in passenger car applications only. DI gasoline fuel injectors have been recently improved considerably, with much higher fuel flow rates and much finer atomization enabled by the advances in fuel pressure and needle actuation. These improved injector performance and the general interest in reducing fuel consumption also in motor sports have made this option interesting again. This paper compares Port Fuel Injection (PFI) and DI of gasoline fuel in a high performance, four cylinder spark ignition engine for super bike racing. Computations are performed with a code for gas exchange, heat transfer and combustion, simulating turbulent combustion and knock.
Technical Paper

A Comparison of Four Methods for Determining the Octane Index and K on a Modern Engine with Upstream, Port or Direct Injection

2017-03-28
2017-01-0666
Combustion in modern spark-ignition (SI) engines is increasingly knock-limited with the wide adoption of downsizing and turbocharging technologies. Fuel autoignition conditions are different in these engines compared to the standard Research Octane Number (RON) and Motor Octane Numbers (MON) tests. The Octane Index, OI = RON - K(RON-MON), has been proposed as a means to characterize the actual fuel anti-knock performance in modern engines. The K-factor, by definition equal to 0 and 1 for the RON and MON tests respectively, is intended to characterize the deviation of modern engine operation from these standard octane tests. Accurate knowledge of K is of central importance to the OI model; however, a single method for determining K has not been well accepted in the literature.
Technical Paper

Hydrogen as a Fuel in SI Engines - Towards Best Efficiency for Car Applications

2011-10-06
2011-28-0018
The goal of hydrogen engine research is to achieve highest possible efficiency with low NOx emissions. This is necessary for the hydrogen car to remain competitive with the ever-improving efficiency of conventional fuel's use, to take advantage of the increased availability of hydrogen distribution for fuel cells and to achieve better range than battery electric vehicles. This paper examines the special problems of hydrogen engine combustion and ways to improve efficiency. Central to this are the effects of compression ratio (CR) and lambda (excess air ratio) and ignition system. The results demonstrate highest indicated thermal efficiency at ultra lean condition of lambda ≻ 2 and with central ignition. This need for this lean mixture is partly explained by the higher heat transfer losses.
Technical Paper

Effects of Engine Speed on Spray Behaviors of the Engine Combustion Network “Spray G” Gasoline Injector

2018-04-03
2018-01-0305
Non-reacting spray behaviors of the Engine Combustion Network “Spray G” gasoline fuel injector were investigated at flash and non-flash boiling conditions in an optically accessible single cylinder engine and a constant volume spray chamber. High-speed Mie-scattering imaging was used to determine transient liquid-phase spray penetration distances and observe general spray behaviors. The standardized “G2” and “G3” test conditions recommended by the Engine Combustion Network were matched in this work and the fuel was pure iso-octane. Results from the constant volume chamber represented the zero (stationary piston) engine speed condition and single cylinder engine speeds ranged from 300 to 2,000 RPM. As expected, the present results indicated the general spray behaviors differed significantly between the spray chamber and engine. The differences must be thoughtfully considered when applying spray chamber results to guide spray model development for engine applications.
Technical Paper

Performance Comparison of Engine Down-Sized to High Efficieincy ICEs in Optimized Hybrid Vehicles

2012-04-16
2012-01-1033
A real time energy management (EMS) optimizing algorithm is introduced that performs similar to offline dynamic programming (DP) for parallel HEVs. The EMS and the DP are compared, especially with the addition of a local hill climbing technique, to the example performance prediction of the fuel consumption of a 1.67 tonne large car using a 50 kW Honda Insight engine (representing 65% power reduction from standard) as reference. Then the performance of the vehicle in HEV mode, with a parallel 30 kW motor/generator is examined. The average improvement of this vehicle over five drive cycles from around the world is about 50% reduction in fuel consumption. Next the engine is replaced with an advanced SI turbocharged engine with assisted ignition which returns the performance to that expected of this class of car i.e. 0-100 km/h acceleration time of 7 s. This results in a 14% average reduction in fuel consumption across the five cycles compared with the base Honda engine.
Technical Paper

Concept Car - Life Cycle Energy Analysis

1998-02-23
981154
The Australian Concept Car was developed with support from a wide range of industry and government sectors. The estimated energy consumption over the vehicle life cycle is presented relative to a typical Australian Upper Medium Class car fleet. Several assumptions are made about the performance of the prototype car, when extrapolating it to a production counterpart for the comparison. Production methods are one area, covered by a survey of suppliers, and particularly in-service fuel use has had to be estimated using validated procedures. Uncertainties exist about the level of recycling at the end of the vehicles projected life after 225,000 km, leading to defined uncertainties. It is concluded that the concept car will have an energy reduction of 15-17.5% and the life cycle CO2 emissions will be reduced by a little less.
Technical Paper

Effects of a Wide Range of Drive Cycles on the Emissions from Vehicles of Three Levels of Technology

1995-02-01
950221
Exhaust emission tests were performed on a fleet of vehicles comprising a range of engine technology from leaded fuel control methods to closed loop three-way catalyst meeting 1992 U.S. standards but marketed in Australia. Each vehicle was tested to 5 different driving cycles including the FTP cycles and steady speed driving. Research had shown that for hot-start operation the major driving pattern parameters which influence fuel consumption and exhaust emissions are average speed and PKE (the positive acceleration kinetic energy per unit distance). Plots from analysis of micro-trip fuel use and emissions rates from the test cycles may be presented as contours in PKE. It follows that the micro trip emissions from a range of driving cycles including, regulated e.g. FTP city and unregulated e.g. LA-92, recently developed EPA cycles or from other cities e.g. Bangkok can be superimposed.
Technical Paper

Optimum Control of an S.I. Engine with a λ=5 Capability

1995-02-01
950689
HAJI (Hydrogen Assisted Jet Ignition) is an advanced combustion initiation system for otherwise standard S.I engines. It utilises the fluid mechanics of a turbulent, chemically active jet, combined with the reliability of spark igniting rich hydrogen mixtures. The result is an extremely robust ignition system, capable of developing power from an engine charged with air-fuel mixtures as lean as λ = 5. Experiments have been performed using a single cylinder engine operating on gasoline in the speed range of 600-1800 r/min. Data are presented in the form of maps which describe fuel efficiency, combustion stability and emissions with respect to load, speed, air-fuel ratio and throttle. The results are incorporated into a model of a known engine and vehicle and this is used to estimate performance over the Federal drive-cycle.
Technical Paper

Turbocharging for Fuel Efficiency

1983-02-01
830014
The arguments are given for the application of a 1.3 litre turbocharged spark ignition engine, as a substitute for a 2 litre normally aspirated engine as the power plant for a compact-sized car in the late 80’s. Three stages of the project leading to an optimised engine-turbocharger package are outlined. Achievement of Stage 1, leading to evaluation of a non-optimised configuration, will be reported. Description includes the use of a separately driven supercharger to define operating limits in the experimental variable matrix comprising compression ratio, boost pressure, EGR rate and spark retard at the knock limit. Computer programs for the optimising stages of the project are outlined. The current status of the project is reported, where, even at this early stage, fuel consumption reductions of 11-22% have been achieved under simulated urban driving conditions.
Technical Paper

Comparison of Ultimate Fuels - Hydrogen and Methane

1987-11-08
871167
The gaseous fuels, hydrogen and methane, are fuels that will likely be in adequate supply when crude oil sourced liquid fuels are scarce. These gases may he used directly in engines, which may need modification or could be used as feed stocks for liquid fuel synthesis. The energy efficiency of using methane and hydrogen in dedicated engines is compared with liquid fuelled engines. Hydrogen gives 6 3% improved efficiency and Methane 39% in city driving and Methane gives slightly improved power but Hydrogen fuel causes a 25% power loss compared with petrol. The storage of Methane in compressed or liquid form and Hydrogen in metal hydrides are compared. The overall efficiency of these gaseous fuel systems are compared, and fuel synthesis is included.
Technical Paper

Observation of the Effect of Swirl on Flame Propagation and the Derived Heat Release and Mass Burning Rates

1987-11-08
871175
A high speed research engine has optical access to over 80% of the combustion chamber volume through a piston with a quartz window. The engine has been used to study the effect of swirl on the spark-ignited combustion by means of high speed photography and analysis of combustion-time data. Results over the speed, swirl and mixture strength range show the flame travel derived from the pressure to agree with the measured flame travel to within 3% on average. Turbulent to laminar flame speed ratios as high as 45 occur under high swirl conditions. However it was not possible to find a predictive model which could explain the turbulent flame speed in terms of engine design variables.
Technical Paper

Estimates of the Fuel Consumption and Exhaust Emissions of Light Trucks

1987-11-08
871235
A fleet of 17 utility, van and flat tray bodied trucks has been tested for fuel consumption and exhaust emissions over a range of drive cycles and steady state operating conditions. The influence of vehicle load on the results was included. For each vehicle the tractive force applied by the chassis dynamometer, on which testing was performed, was adjusted to match those found on the road using a new procedure. The fuel consumption results show a downward trend with model year (1.7% annum); about 30% higher petrol use compared with diesel; a cold start penalty of 3 L/100 km and over 2:1 variation for vehicles capable of identical transport task. Exhaust emissions from these rigid trucks were between 3 and 6 times greater than those of the passenger car fleet.
Technical Paper

Quasi-Dimensional and CFD Modelling of Turbulent and Chemical Flame Enhancement in an Ultra Lean Burn S.I. Engine

2000-03-06
2000-01-1263
HAJI, or Hydrogen Assisted Jet Ignition, is an ignition system which uses a hot gaseous jet to initiate and stabilise combustion. HAJI allows a dramatic reduction of cyclic variability, and an extension of the lean limit of the engine to lambda 5. Improvements in cyclic variability lead to increased power output, reduced noise, wear on components and emissions. The ability to operate ultra lean gives 25% improvements in efficiency and extremely low emissions, particularly of NOx. Combustion analysis based on the fractal dimensions of the propagating flame fronts, obtained from optical flame data, support the hypothesis of enhancement of flame speeds through the presence of active chemical species. However, the relative contributions of turbulence and active species to the mechanisms of combustion enhancement realised with HAJI are not well defined. HAJI ignition has also been simulated with a comprehensive three dimensional combustion code, KIVA3.
Technical Paper

The Systematic Evaluation of Twelve LP Gas Fuels for Emissions and Fuel Consumption

2000-06-19
2000-01-1867
The effects on bi-fuel car exhaust emissions, fuel consumption and acceleration performance of a range of LPG fuels has been determined. The LPGs tested included those representing natural gas condensate and oil refineries' products to include a spectrum of C3:C4 and paraffiinic:olefinic mixtures. The overall conclusions are that exhaust emissions from the gaseous fuels for the three-way catalyst equipped cars tested were lower than for gasoline. For all the LPGs, CO2 equivalent emissions are reduced by 7% to 10% or more compared with gasoline. The cars' acceleration performance indicates that there was no sacrifice in acceleration times to various speeds, with any gaseous fuel in these OEM developed cars.
X