Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

Design Optimization of a Series Plug-in Hybrid Electric Vehicle for Real-World Driving Conditions

2010-04-12
2010-01-0840
This paper proposes a framework to perform design optimization of a series PHEV and investigates the impact of using real-world driving inputs on final design. Real-World driving is characterized from a database of naturalistic driving generated in Field Operational Tests. The procedure utilizes Markov chains to generate synthetic drive cycles representative of real-world driving. Subsequently, PHEV optimization is performed in two steps. First the optimal battery and motor sizes to most efficiently achieve a desired All Electric Range (AER) are determined. A synthetic cycle representative of driving over a given range is used for function evaluations. Then, the optimal engine size is obtained by considering fuel economy in the charge sustaining (CS) mode. The higher power/energy demands of real-world cycles lead to PHEV designs with substantially larger batteries and engines than those developed using repetitions of the federal urban cycle (UDDS).
Journal Article

Optimization of Spatially Varying Fiber Paths for a Symmetric Laminate with a Circular Cutout under Remote Uniaxial Tension

2015-09-15
2015-01-2609
Minimizing the stress concentrations around cutouts in a plate is often a design problem, especially in the Aerospace industry. A problem of optimizing spatially varying fiber paths in a symmetric, linear orthotropic composite laminate with a cutout, so as to achieve minimum stress concentration under remote unidirectional tensile loading is of interest in this study. A finite element (FE) model is developed to this extent, which constraints the fiber angles while optimizing the fiber paths, proving essential in manufacturing processes. The idea to be presented could be used to derive fiber paths that would drastically reduce the Stress Concentration Factor (SCF) in a symmetric laminate by using spatially varying fibers in place of unidirectional fibers. The model is proposed for a four layer symmetric laminate, and can be easily reproduced for any number of layers.
Journal Article

Launch Performance Optimization of GTDI-DCT Powertrain

2015-04-14
2015-01-1111
A direct trajectory optimization approach is developed to assess the capability of a GTDI-DCT Powertrain, with a Gasoline Turbocharged Direct Injection (GTDI) engine and Dual Clutch Transmission (DCT), to satisfy stringent drivability requirements during launch. The optimization is performed directly on a high fidelity black box powertrain model for which a single simulation of a launch event takes about 8 minutes. To address this challenging problem, an efficient parameterization of the control trajectory using Gaussian kernel functions and a Mesh Adaptive Direct Search optimizer are exploited. The results and observations are reported for the case of clutch torque optimization for launch at normal conditions, at high altitude conditions and at non-zero grade conditions. The results and observations are also presented for the case of simultaneous optimization of multiple actuator trajectories at normal conditions.
Journal Article

Control Strategies for Power Quantized Solid Oxide Fuel Cell Hybrid Powertrains: In Mobile Robot Applications

2016-04-05
2016-01-0317
This paper addresses scheduling of quantized power levels (including part load operation and startup/shutdown periods) for a propane powered solid oxide fuel cell (SOFC) hybridized with a lithium-ion battery for a tracked mobile robot. The military requires silent operation and long duration missions, which cannot be met by batteries alone due to low energy density or with combustion engines due to noise. To meet this need we consider an SOFC operated at a few discrete power levels where maximum system efficiency can be achieved. The fuel efficiency decreases during transients and resulting thermal gradients lead to stress and degradation of the stack; therefore switching power levels should be minimized. Excess generated energy is used to charge the battery, but when it’s fully charged the SOFC should be turned off to conserve fuel.
Journal Article

Powerpack Optimal Design Methodology with Embedded Configuration Benchmarking

2016-04-05
2016-01-0313
Design of military vehicle needs to meet often conflicting requirements such as high mobility, excellent fuel efficiency and survivability, with acceptable cost. In order to reduce the development cost, time and associated risk, as many of the design questions as possible need to be addressed with advanced simulation tools. This paper describes a methodology to design a fuel efficient powerpack unit for a series hybrid electric military vehicle, with emphasis on the e-machine design. The proposed methodology builds on previously published Finite element based analysis to capture basic design features of the generator with three variables, and couples it with a model reduction technique to rapidly re-design the generator with desired fidelity. The generator is mated to an off the shelf engine to form a powerpack, which is subsequently evaluated over a representative military drive cycles.
Journal Article

Optimization of an Advanced Combustion Strategy Towards 55% BTE for the Volvo SuperTruck Program

2017-03-28
2017-01-0723
This paper describes a novel design and verification process for analytical methods used in the development of advanced combustion strategies in internal combustion engines (ICE). The objective was to improve brake thermal efficiency (BTE) as part of the US Department of Energy SuperTruck program. The tools and methods herein discussed consider spray formation and injection schedule along with piston bowl design to optimize combustion efficiency, air utilization, heat transfer, emission, and BTE. The methodology uses a suite of tools to optimize engine performance, including 1D engine simulation, high-fidelity CFD, and lab-scale fluid mechanic experiments. First, a wide range of engine operating conditions are analyzed using 1-D engine simulations in GT Power to thoroughly define a baseline for the chosen advanced engine concept; secondly, an optimization and down-select step is completed where further improvements in engine geometries and spray configurations are considered.
Journal Article

Uncertainty Propagation in Multi-Disciplinary Design Optimization of Undersea Vehicles

2008-04-14
2008-01-0218
In this paper the development of statistical metamodels and statistical fast running models is presented first. They are utilized for propagating uncertainties in a multi-discipline design optimization process. Two main types of uncertainty can be considered in this manner: uncertainty due to variability in design variables or in random parameters; uncertainty due to the utilization of metamodels instead of the actual simulation models during the optimization process. The value of the new developments and their engagement in multi-discipline design optimization is demonstrated through a case study. An underwater vehicle is designed under four different disciplines, namely, noise radiation, self-noise due to TBL excitation, dynamic response due to propulsion impact loads, and response to an underwater detonation.
Journal Article

Frequency Domain Power Distribution Strategy for Series Hybrid Electric Vehicles

2012-04-16
2012-01-1003
Electrification and hybridization have great potential for improving fuel economy and reducing visual signature or soot emissions in military vehicles. Specific challenges related to military applications include severe duty cycles, large and uncertain energy flows through the system and high thermal loads. A novel supervisory control strategy is proposed to simultaneously mitigate severe engine transients and to reduce high electric current in the battery without oversizing the battery. The described objectives are accomplished by splitting the propulsion power demand through filtering in the frequency domain. The engine covers only low frequency power demand profile while the battery covers high frequency components. In the proposed strategy, the separation filter is systematically designed to identify different frequency components with the consideration of fuel consumption, aggressive engine transients, and battery electric loads.
Journal Article

The Influence of Road Surface Properties on Vehicle Suspension Parameters Optimized for Ride - Design Trends for Global Markets

2012-04-16
2012-01-0521
Suspension design is influenced by many factors, especially by vehicle dynamics performance in ride, handling and durability. In the global automotive industry it is common to “customize” or tune suspension parameters so that a vehicle is more acceptable to a different customer base and in a different driving environment. This paper seeks to objectively quantify certain aspects of tuning via ride optimization, taking account of market differences in road surface spectral properties and loading conditions. A computationally efficient methodology for suspension optimization is developed using stochastic techniques. A small (B-class) vehicle is chosen for the study and the following main suspension parameters are selected for optimization - spring stiffness, damping rate and vertical tire stiffness. The road is characterized as a stationary random process, using scaling and shaping filters representative of comparable roads in India and the USA.
Technical Paper

Simulation Study of a Series Hydraulic Hybrid Propulsion System for a Light Truck

2007-10-30
2007-01-4151
The global energy situation, the dependence of the transportation sector on fossil fuels, and a need for rapid response to the global warming challenge, provide a strong impetus for development of fuel efficient vehicle propulsion. The task is particularly challenging in the case of trucks due to severe weight/size constraints. Hybridization is the only approach offering significant breakthroughs in near and mid-term. In particular, the series configuration decouples the engine from the wheels and allows full flexibility in controlling the engine operation, while the hydraulic energy conversion and storage provides exceptional power density and efficiency. The challenge stems from a relatively low energy density of the hydraulic accumulator, and this provides part of the motivation for a simulation-based approach to development of the system power management. The vehicle is based on the HMMWV platform, a 4×4 off-road truck weighing 5112 kg.
Technical Paper

Assessing the Importance of Motion Dynamics for Ergonomic Analysis of Manual Materials Handling Tasks using the AnyBody Modeling System

2007-06-12
2007-01-2504
Most current applications of digital human figure models for ergonomic assessments of manual tasks focus on the analysis of a static posture. Tools available for static analysis include joint-specific strength, calculation of joint moments, balance maintenance capability, and low-back compression or shear force estimates. Yet, for many tasks, the inertial loads due to acceleration of body segments or external objects may contribute significantly to internal body forces and tissue stresses. Due to the complexity of incorporating the dynamics of motion into analysis, most commercial software packages used for ergonomic assessment do not have the capacity to include dynamic effects. Thus, commercial human modeling packages rarely provide an opportunity for the user to determine if a static analysis is sufficient.
Technical Paper

An Integrated Model of Gait and Transition Stepping for Simulation of Industrial Workcell Tasks

2007-06-12
2007-01-2478
Industrial tasks performed by standing workers are among those most commonly simulated using digital human models. Workers often walk, turn, and take acyclic steps as they perform these tasks. Current h uman modeling tools lack the capability to simulate these whole body motions accurately. Most models simulate walking by replaying joint angle trajectories corresponding to a general gait pattern. Turning is simulated poorly if at all, and violations of kinematic constraints between the feet and ground are common. Moreover, current models do not accurately predict foot placement with respect to loads and other hand targets, diminishing the utility of the associated ergonomic analyses. A new approach to simulating stepping and walking in task-oriented activities is proposed. Foot placements and motions are predicted from operator and task characteristics using empirical models derived from laboratory data and validated using field data from an auto assembly plant.
Technical Paper

Worst Case Scenarios Generation and Its Application on Driving

2007-08-05
2007-01-3585
The current test methods are insufficient to evaluate and ensure the safety and reliability of vehicle system for all possible dynamic situations including the worst cases such as rollover, spin-out and so on. Although the known NHTSA J-turn and Fish-hook steering maneuvers are applied for the vehicle performance assessment, they are not enough to predict other possible worst case scenarios. Therefore, it is crucial to search for the various worst cases including the existing severe steering maneuvers. This paper includes the procedure to search for other useful worst case based upon the existing worst case scenarios in terms of rollover and its application in simulation basis. The human steering angle is selected as a design variable and optimized to maximize the index function to be expressed in terms of vehicle roll angle. The obtained scenarios were enough to generate the worse cases than NHTSA ones.
Technical Paper

A Knowledge Representation Scheme for Nondestructive Testing of Composite Components

1990-02-01
900070
This paper presents our efforts to formalize the knowledge domain of nondestructive quality control of automotive composite components with organic (resin) matrices and to develop a prototype knowledge-based system, called NICC for Nondestructive Inspection of Composite Components, to help in the quality assurance of individual components. Geometric and bonding characteristics of parts and assemblies are taken into account, as opposed to the better understood evaluation of test specimens. The reasoning process was divided in two stages: in the first stage all flaws that might be present in the given part are characterized; in the second stage appropriate nondestructive testing procedures are specified to detect each of the possible flaws. The use of nondestructive techniques in the inspection of composites is fairly recent and hence, the knowledge required to develop an expert system is still very scattered and not fully covered in the literature.
Technical Paper

Software Integration for Simulation-Based Analysis and Robust Design Automation of HMMWV Rollover Behavior

2007-04-16
2007-01-0140
A multi-body dynamics model of the U.S. Army3s High Mobility Multi-purpose Wheeled Vehicle (HMMWV) has been created using commercial software (ADAMS) to simulate and analyze the vehicle3s rollover behavior. However, manual operation of such simulation and analysis for design purposes is prohibitively expensive and time consuming, limiting the engineers3 ability to utilize the model fully and extract from it useful design information in a timely, cost-effective manner. To address this challenge, a commercial system integration and optimization software (OPTIMUS) is utilized in order to automate the simulation processes and to enable the more complex uncertainty-based analysis of the HMMWV rollover behavior under a variety of external conditions. Challenges involved in integrating the software are highlighted and remedies are discussed. Rollover analysis results from using the integrated model and automated simulation are also presented.
Technical Paper

Commonality and Differences between Cruiser, Sport, and Touring Motorcycles: An Ergonomics Study

2007-04-16
2007-01-0438
This paper presents results of two surveys, namely, a photographic measurements survey and a rider survey, conducted to determine how the type and origin of a motorcycle related to motorcycle dimensions, rider characteristics, seating posture, and motorcycle controls and displays. In the photographic survey, 12 most popular motorcycles covering three types (cruiser, sport, and touring) and three origins (Europe, Asia and North America) were measured from photographs taken in a standardized procedure with and without a rider. The data showed that the Asian and North American cruisers were very similar in all dimensions. These include seat height, seat to handlebar location, seat to foot rest location, foot rest size, and handgrip stance. This resulted in similar rider posture. North American sport motorcycles were more like cruisers than the Asian and European sport motorcycles.
Technical Paper

Mechanical Response of Composite Reinforced Aluminum Foam Sandwich Systems for Automotive Structures

2007-04-16
2007-01-1722
This paper presents the design and manufacture a sandwich structure bumper beam that could withstand at least the same load required to have plastic deformation in a 2002 Jeep Wrangler bumper beam at a lower weight. The dimensions from a bumper beam were scaled down in order to match the limiting length of the sandwich structure specimens. Theoretical optimization calculations were conducted in order to find the optimal dimensions and face thicknesses for the hybrid structures. Sandwich panels were based on Glass Fiber Reinforced Polypropylene (Twintex) and an Aluminum foam core (Alporas). Three point bending tests were performed on the sandwich structures. The resulting failure modes were revealed and found to be in agreement with those offered by the analytical predictions.
Technical Paper

PEM Fuel Cell Stack Characterization and its Integration in Simulating a Fuel Cell Powertrain

2008-06-23
2008-01-1796
Fuel cell based powertrains are considered as potential candidates for future vehicles. Modeling of vehicle powertrains, using a combination of components and energy storage media, are widely used to predict vehicle performances under different duty cycles. This paper deals with performance analysis of a light-duty vehicle comprised of a PEM fuel cell stack, in combination with different energy storage systems using Powertrain Simulation Analysis Toolkit (PSAT). The performance of the stack was characterized by experimental data on a smaller PEM stack and was used in the simulation. The stack data was collected at controlled loading and thermal parameters. Three energy storage systems are considered in the analysis: nickel metal hydride battery storage, lithium-ion battery storage and ultra capacitor energy storage. The simulation results were analyzed for comparative evaluations and to optimize the performance of the fuel cell powertrain configurations.
Technical Paper

Digital Human Modeling Goals and Strategic Plans

2008-06-17
2008-01-1933
Digital human modeling (DHM) progress worldwide will be much faster and cohesive if the diverse community now developing simulations has a global blueprint for DHM, and is able to work together efficiently. DHM developers and users can save time by building on each other's work. This paper highlights a panel discussion on DHM goals and strategic plans for the next decade to begin formulating the international blueprint. Four subjects are chosen as the starting points: (1) moving DHM into the public safety and internet arenas, (2) role of DHM in computer assisted surgery and automotive safety, (3) DHM in defense applications, and (4) DHM to improve workplace ergonomics.
Technical Paper

Three-Dimensional Reach Kinematics of the Upper Extremity in a Dynamic Vehicle Environment

2008-06-17
2008-01-1886
Simulation of reach movements is an essential component for proactive ergonomic analysis in digital human modeling and for numerous applications in vehicle design. Most studies on reach kinematics described human movements in static conditions. Earlier studies of reach performance in vibration environments focused mainly on fingertip deviation without considering multi-body dynamics. However, for the proper assessment of reach performance under whole-body vibration exposure, a multi-body biodynamic model needs to be developed. This study analyzes three dimensional reach kinematics of the upper extremity during in-vehicle operations, using a multi-segmental model of the upper body in the vibratory environment. The goals are to identify the characteristics of upper body reach movements and to investigate vibration-induced changes in joint kinematics. Thirteen subjects reached to four target directions in the right hemisphere.
X